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1. The McEliece cryptosystem

» 1978 McEliece cryptosystem based on Goppa codes.

Secret Key : A generator matrix G of an [n, k|, code C having
an efficient t—correcting algorithm;

Public Key : G’ := SGP, where S € GL(k,F,) and P is an
n X n permutation matrix;

Encryption : meFrf +— y MG’ + e with le| =t.

Decryption : y +— yP™ ! = mSG + eP~! +—
mS +— m.

1/40



Advantages

Post Quantum:

Efficient encryption and decryption (compared to RSA, El Gamal):
the original McEliece has encryption =~ 5 times faster than RSA
1024, decryption = 150 times faster than RSA 1024.

Drawbacks

Huge size of the keys: the original proposal (McEliece 1978) has a
67ko key (more than 500 times RSA 1024 for a similar security).
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» 1986 Niederreiter variant based on GRS codes.
» 1992 Sidelnikov-Shestakov attack.

» 2006 Wieschebrink, reparation of the Niederreiter scheme by
adding random columns to the generator matrix.

» 2011 Baldi-Bianchi-Chiaraluce-Rosenthal-Schipani, reparation of
the Niederreiter scheme by changing the permutation matrix II
into II + R where R is of rank one.

» 2011, Bogdnanov-Lee, homomorphic public-key encryption scheme
based on Reed-Solomon codes.

» 2013, Couvreur-Gaborit-Gauthier-Otmani-Tillich, attack on all
these variants based on square code considerations.

» 2013 Couvreur-Gaborit-Gauthier-Otmani-Tillich, filtration attack
on GRS codes.
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Binary Goppa

4/40



Variants based on subcodes of generalized
Reed-Solomon codes.

» 2005 Berger-Loidreau : subcodes of generalized Reed-Solomon
codes.

» 2010 Wieschebrink : attack by square code considerations.
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ubfield subcodes of GRS cog
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Variants based on algebraic geometric codes

» 1996 : proposed by Janwa-Moreno.

» 2008 : Attacked by Faure-Minder for hyperelliptic curves of genus
< 2.

» 2014 : Attacked in general by recovering an error-correcting
pair from square code and filtration considerations by Couvreur-
Marquez Corbella-Pellikaan.
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subfield subcodes of GRS &
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Variants based on Reed-Muller codes.

» 1994 Suggested by Sidelnikov.

» 2007 Attack by Minder-Shokrollahi in sub-exponential time by
recovering the structure from minimal codewords.

» 2013 Chizhov-Borodin refinement of the attack by square code
considerations.
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Alternant/Goppa codes with symmetry

» 2005 Gaborit : quasi-cyclic subcodes of BCH codes.

» 2007 Otmani-Tillich-Dallot : attack.

» 2009 Berger-Cayrel-Gaborit-Otmani : quasi-cyclic alternant codes.
» 2009 Misoczki-Barreto : quasi-dyadic Goppa codes.

» 2010 Faugere-Otmani-Perret-Tillich/Gauthier-Leander : almost
all 2009 schemes were broken with an algebraic attack (possible
because of the reduction of the number of unknowns).
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» 199. a zillion propositions with LDPC codes.
» 2000 Monico-Rosenthal-Shokrollahi : attack.

» 2007: Baldi-Chiaraluce “repairing” the LDPC schemes by taking
sums of permutation matrices.

» 2007 Otmani-Tillich-Dallot : attack.

» 2008 Baldi-Bodrato-Chiaraluce : a new version.

» 2012 Misoczki-Tillich-Barreto-Sendrier : MDPC codes.
» 2012 Londahl-Johansson : convolutional codes.

» 2013 Landais-Tillich : attack.
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2. Algebraic attacks through square codes
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Definition 1. | ] Let k and n be
integers such that 1 < k < n < q where q is a power of a
prime number. The generalized Reed-Solomon code GRS (x,y)
of dimension k is associated to a pair (x,y) € Fy x F' where x is
an n-tuple of distinct elements of I, and the entries y; are arbitrary
nonzero elements in F,. GRSy (x,vy) is defined as:

9 { (y1p(o1) .- ynpln)) : p € Fy[ X, degp < k.

x Is the and y the

[Sidelnikov-Shestakov1992]: recover from an arbitrary generator
matrix of a GRS code €, a tuple (x,y) such that C = GRS(x, y)
(all what is needed to decode C efficiently).
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Definition 2. | ] Given two vectors a =
(a1,...,an) and b = (by,...,b,) € Fy, we denote by a x b the
componentwise product

det (a1b1, ..., anby)

Definition 3. | ] The star product
code denoted by A xB of A and B is the vector space spanned by

all products a x b where a and b range over A and B respectively.
When B = A, A x A is called the square code of A and is rather
denoted by AZ?.
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Dimension of the square code

A and B codes with respective bases (a;) and (b,).

1. dim(A x B) < dim(A) dim(B) (generated by the a; x b;'s)

dim(A) + 1

2. dim(A?%) < ( )

) (generated by the a; xa;'s with ¢ < j)
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What is wrong with generalized Reed-Solomon
codes ?

When € is a random code of length n, with high probability

dim(C?) = min { (dim(g) i 1) | n}

When C is a generalized Reed-Solomon code

dim(C?) = min {2dim(C) — 1, n}
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¢ = (y1p(z1), - - -, ynP(2n)), € = (119(21), - .., ynq(zn)) € GRSy(x, y)

where p and ¢ are two polynomials of degree at most & — 1.

cxc = (y%p(xl)q(mz), e ,y?,,p(fl?n)CI(ZCn)) = (y%"“(xl)a e 7yir($n))

where r is a polynomial of degree < 2k — 2.

— cxc € GRSZk—l(mayZ)
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3. Couvreur-Otmani-Tillich : filtration attack

Ist polynomial-time attack on McEliece based on certain Goppa
codes.
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A filtration for GRS codes

A new attack on McEliece based on GRS codes.
known : Cy = GRSk (x,y)
unknown : @,y.

OO — GRSk(w,y) D Cl — GRSk_l(w,y) Do D Ck—l — GRSl(way)
The point:
Cr—1=1{ay,a € F,}

y known = x by solving a linear system.
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Square code considerations and the filtration

Assumption : We know Cy = GRSy (x, y).

Bold assumption : we also know C; = GRS, (x,y)

Proposition 1. C5 = GRS, _s(x,y) is the set of ¢ satisfying

C c GRSk—l(w7y)
c* GRSy (z,y) C GRS _1(x,y)**
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Viewing codewords as polynomials

Consider ¢ € GRS, _1(x,y), then there exists a polynomial p(X)
in F,|X] of degree < k — 2 such that

C; = yzp(l“z)

c* GRS, (x,y) GRS;_1(z,y)**

m <= 1IN

(yip(x:)yi q(x;) ) \GRSk_l(az,y)*i for all ¢ of deg < k
deg<k—1 degék—él

=

/N

deg p k—3
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Polynomial point of view

Co =GRSy (x,y) D C; =GRS, _1(x,y) 2 --- D Cr_1 = GRS (x,y)

corresponds to

U
U

Folzl<k 2 Fglz]l<k—1 Fqlz]<1
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Elementary linear algebra

Computing a basis of the ¢ satisfying

C c GRSk—l(way)
¢+ GRSy (z,y) C GRSy _1(x,y)*?

can be done by elementary linear algebra : solving a linear system.
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GRS _{(x,y) unknown, consider instead the filtration corr. to
¢
FQ[Z]<1€ D ZFq[Z]<k—1 D e Dz Fq[2]<k_£ D
The first two terms are known.

The first € = GRSy (x, y)

The second: its shortening in the first position ( w.l.o.g. we may
assume 1 = 0).

/1 >1< >|< \

/
0 ay; ... ay

/ /
\O Qp—11 -+~ ak—l,n—l)
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What about alternant/Goppa codes ?

Definition 1. Let x € Fn,y € Fim be as in the definition of GRS
codes. The Is defined by

Alt,.(x,y) d:efGRST(:I:, y) N Fy

Proposition 1.

dim Alt,-(z, y)
dminAlt, (2, y)

VoWV
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Definition 2. Let x € F{im be a support and I" € Fym|z] such that
Vi,['(x;) # 0, then the is defined by

Gop(z,I') = Altgegr(, y),

1

Proposition 2. [ts parameters are given by
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Theorem 1. [Sugyiama et al. 1978] Letx € Fiin andy € Fym|2]
squarefree, then

Gop(xz,7?™") = Gop(x,~)

Such a code is called a Goppa code. Parameters :
dim Gop(z,79™") > n—m(q—1)degy
dminGOP(mvvq_l) > qdegv—l—l

~ twice the error correction capacity in the binary case!
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Distinguishing alternant codes from random codes

We have
Alt,(z,y) = GRS,(x,y)" N Fy
= GRS, _,(z,y") NF

and
dim Alt,.(xz,y) > n — mr.

Fact 1. 7o distinguish we need
2ln—r)<n = r>n/2,

however
m>1 =—n-—mr <O0.
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Distinguisher on the dual code

» 2011 Faugere-Gauthier-Otmani-Perret-Tillich : it is possible to
distinguish alternant codes of high rate from random codes.

» 2012 Marquez Corbella-Pellikaan : equivalent description of the
distinguisher in terms of the square of the dual of the alternant
code.
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Theorem 2. [Couvreur , Otmani, Tillich 2013] /f m = 2 and
v € F 2|z] an irreducible polynomial of degree r

1. Gop(z,7""!) = Gop(z,y* ™),

2. dim Gop(x,v?) =>n—un_r(q—1) + r(r —2)
=2
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Distinguishing wild Goppa codes for m = 2

Theorem 3. [Couvreur, Otmani, Tillich 2014] The square of the
shortening of such a wild Goppa in a positions has an abnormal

dimension when a € {a™,...,a™} and
a- = n—2r(¢g+1)—1
N 3(n—a)—4r(g+1) —2 <
a” = max<{a=>0 . {n _a (n—a—QT(CI;l)-I-T‘('P—Q))}

31/40



Table 1: Largest value of g for which we can distinguish Gop(x, v4~ 1)

with v irreducible of degree r.
r 2 3 4 b

g 9 19 37 64
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Couvreur-Otmani-Tillich 2014 : filtration attack

Public key € is a wild Goppa code Gop(x,v4™1), with m = 2.

Fact 2. W.lo.g. we may assume

ro=0 et x1=1.
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Filtration attack, Step 1

By using the same technique as for GRS codes, we compute the

filtration
Co=CCCLC--CCyp

associated to

where s =n —r(q+ 1).

CoxCy C Clyya) *x Cryyo
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Lemma 1.
p*(=(g+1)) Cyt1 C C.

Sketch of proof :
Let ¢ € C;4+1 and p. be the corresponding polynomial p. is of the
form

pe(2) = 2971 f(2),  degge <s—(qg+1).
For all z € F 2, 29t € Fy (this is NFQQ/Fq(x)).

If 29 q(x;) € F, for all i, then g(x;) € F, and therefore to ¢
corresponds the codeword z*~ (4t x ¢ € @
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Step 1. Compute

C=C2C 2C 2 -2 Cu1

Step 2. From C,1;, one can compute gt —
1 1 1
(g™ 29, 28T)). (It uses the norm over F».)

Reapplying Step 1 and 2, one can also compute: (x — 1)*(q+1) _
((wo — 1)2*, (x1 — 1) L (w1 — 1)THY)
Step 3. Deduce from *(9t1) and ( — 1)*(@* 1) the support  up

to Galois action.

Step 4. A bit more technique to deduce & and the Goppa
Polynomial ~.
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Complexity and running time
Complexity : O(n*y/n +n*(¢* —n)) (recall that n < ¢°).

Table 2: Running times with an Intel® Xeon 2.27GHz
g, n, k, ] [29,781, 516,5] h  [29, 791, 575, 4] h  [29,794,529,5] h
Average time 16min 19.5min 15.5min

(q,n, k,7) [31, 795, 563, 4] h  [31,813, 581,4] h  [31, 851, 619, 4] h
Average time 31.5min 31.5min 27.2min

(g, n, k,7) [32,841,601,4] A [31, 900, 228, 14]
Average time 49.5min 24min

Proposed parameters (Bernstein, Lange, Peters 2010)

Never proposed parameters (More than 239 possible choices for
and security > 125 bits with respect to ISD)
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The old picture

wild G
codes

Binary Gop p\
oppa
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The new picture
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Goppa codes are not necessarily immune to square code attacks.

Distinguisher = attack.

Question : are other distingushable codes breakable? For instance
high rate Goppa codes (distinguisher on the dual).

Polynomial time attacks on Reed-Muller codes ?

Polynomial time attacks on subcodes of algebraic geometry codes?

other families of codes (MDPC,. . .)?
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