Recent attacks on McEliece schemes based on Goppa codes

J.-P. Tillich
June 9, 2014

1. The McEliece cryptosystem

- 1978 McEliece cryptosystem based on Goppa codes.
- Secret Key: A generator matrix \boldsymbol{G} of an $[n, k]_{q}$ code \mathcal{C} having an efficient t-correcting algorithm;
- Public Key : $\boldsymbol{G}^{\prime}:=S \boldsymbol{G} P$, where $S \in \mathrm{GL}\left(k, \mathbb{F}_{q}\right)$ and P is an $n \times n$ permutation matrix;
- Encryption : $m \in \mathbb{F}_{q}^{k} \longmapsto y \stackrel{\text { def }}{=} m \boldsymbol{G}^{\prime}+e$ with $|e|=t$.
- Decryption : $y \longmapsto y P^{-1}=m S \boldsymbol{G}+e P^{-1}$ $m S \longmapsto m$.

Advantages/drawbacks

Advantages

- Post Quantum;
- Efficient encryption and decryption (compared to RSA, El Gamal): the original McEliece has encryption ≈ 5 times faster than RSA 1024, decryption ≈ 150 times faster than RSA 1024.

Drawbacks

- Huge size of the keys: the original proposal (McEliece 1978) has a 67ko key (more than 500 times RSA 1024 for a similar security).
$2 / 40$

Variants based on generalized Reed-Solomon codes

- 1986 Niederreiter variant based on GRS codes.
- 1992 Sidelnikov-Shestakov attack.
- 2006 Wieschebrink, reparation of the Niederreiter scheme by adding random columns to the generator matrix.
- 2011 Baldi-Bianchi-Chiaraluce-Rosenthal-Schipani, reparation of the Niederreiter scheme by changing the permutation matrix Π into $\Pi+R$ where R is of rank one.
- 2011, Bogdnanov-Lee, homomorphic public-key encryption scheme based on Reed-Solomon codes.
- 2013, Couvreur-Gaborit-Gauthier-Otmani-Tillich, attack on all these variants based on square code considerations.
- 2013 Couvreur-Gaborit-Gauthier-Otmani-Tillich, filtration attack on GRS codes.

Variants based on subcodes of generalized Reed-Solomon codes.

- 2005 Berger-Loidreau : subcodes of generalized Reed-Solomon codes.
- 2010 Wieschebrink : attack by square code considerations.

$6 / 40$

Variants based on algebraic geometric codes

- 1996 : proposed by Janwa-Moreno.
- 2008 : Attacked by Faure-Minder for hyperelliptic curves of genus $\leqslant 2$.
- 2014 : Attacked in general by recovering an error-correcting pair from square code and filtration considerations by CouvreurMàrquez Corbella-Pellikaan.

$8 / 40$

Variants based on Reed-Muller codes.

- 1994 Suggested by Sidelnikov.
- 2007 Attack by Minder-Shokrollahi in sub-exponential time by recovering the structure from minimal codewords.
- 2013 Chizhov-Borodin refinement of the attack by square code considerations.

Alternant/Goppa codes with symmetry

- 2005 Gaborit: quasi-cyclic subcodes of BCH codes.
- 2007 Otmani-Tillich-Dallot: attack.
- 2009 Berger-Cayrel-Gaborit-Otmani : quasi-cyclic alternant codes.
- 2009 Misoczki-Barreto : quasi-dyadic Goppa codes.
- 2010 Faugère-Otmani-Perret-Tillich/Gauthier-Leander : almost all 2009 schemes were broken with an algebraic attack (possible because of the reduction of the number of unknowns).

Other variants

- 199. a zillion propositions with LDPC codes.
- 2000 Monico-Rosenthal-Shokrollahi : attack.
- 2007: Baldi-Chiaraluce "repairing" the LDPC schemes by taking sums of permutation matrices.
- 2007 Otmani-Tillich-Dallot: attack.
- 2008 Baldi-Bodrato-Chiaraluce : a new version.
- 2012 Misoczki-Tillich-Barreto-Sendrier: MDPC codes.
- 2012 Löndahl-Johansson : convolutional codes.
- 2013 Landais-Tillich : attack.

2. Algebraic attacks through square codes

Generalized Reed-Solomon codes

Definition 1. [Generalized Reed-Solomon code] Let k and n be integers such that $1 \leqslant k<n \leqslant q$ where q is a power of a prime number. The generalized Reed-Solomon code $\operatorname{GRS}_{k}(\boldsymbol{x}, \boldsymbol{y})$ of dimension k is associated to a pair $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ where \boldsymbol{x} is an n-tuple of distinct elements of \mathbb{F}_{q} and the entries y_{i} are arbitrary nonzero elements in $\mathbb{F}_{q} . \mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})$ is defined as:

$$
\operatorname{GRS}_{k}(x, y) \stackrel{\text { def }}{=}\left\{\left(y_{1} p\left(x_{1}\right), \ldots, y_{n} p\left(x_{n}\right)\right): p \in \mathbb{F}_{q}[X], \operatorname{deg} p<k\right\}
$$

\boldsymbol{x} is the support and \boldsymbol{y} the multiplier.
[Sidelnikov-Shestakov1992]: recover from an arbitrary generator matrix of a GRS code \mathcal{C}, a tuple $(\boldsymbol{x}, \boldsymbol{y})$ such that $\mathcal{C}=\operatorname{GRS}(\boldsymbol{x}, \boldsymbol{y})$ (all what is needed to decode \mathcal{C} efficiently).

The square code

Definition 2. [Componentwise product] Given two vectors $\boldsymbol{a}=$ $\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$, we denote by $\boldsymbol{a} \star \boldsymbol{b}$ the componentwise product

$$
a \star b \stackrel{\text { def }}{=}\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

Definition 3. [Product of codes \& square code] The star product code denoted by $\mathcal{A} \star \mathcal{B}$ of \mathcal{A} and \mathcal{B} is the vector space spanned by all products $\boldsymbol{a} \star \boldsymbol{b}$ where \boldsymbol{a} and \boldsymbol{b} range over \mathcal{A} and \mathcal{B} respectively. When $\mathcal{B}=\mathcal{A}, \mathcal{A} \star \mathcal{A}$ is called the square code of \mathcal{A} and is rather denoted by \mathcal{A}^{2}.

Dimension of the square code

\mathcal{A} and \mathcal{B} codes with respective bases $\left(\boldsymbol{a}_{i}\right)$ and $\left(\boldsymbol{b}_{j}\right)$.

1. $\operatorname{dim}(\mathcal{A} \star \mathcal{B}) \leqslant \operatorname{dim}(\mathcal{A}) \operatorname{dim}(\mathcal{B})$ (generated by the $\boldsymbol{a}_{i} \star \boldsymbol{b}_{j}{ }^{\prime}$ s)
2. $\operatorname{dim}\left(\mathcal{A}^{2}\right) \leqslant\binom{\operatorname{dim}(\mathcal{A})+1}{2}$ (generated by the $\boldsymbol{a}_{i} \star \boldsymbol{a}_{j}$'s with $\left.i \leqslant j\right)$

What is wrong with generalized Reed-Solomon codes ?

When \mathcal{C} is a random code of length n, with high probability

$$
\operatorname{dim}\left(\mathfrak{C}^{2}\right)=\min \left\{\binom{\operatorname{dim}(\mathcal{C})+1}{2}, n\right\}
$$

When \mathcal{C} is a generalized Reed-Solomon code

$$
\operatorname{dim}\left(\mathcal{C}^{2}\right)=\min \{2 \operatorname{dim}(\mathcal{C})-1, n\}
$$

The explanation

$\boldsymbol{c}=\left(y_{1} p\left(x_{1}\right), \ldots, y_{n} p\left(x_{n}\right)\right), \boldsymbol{c}^{\prime}=\left(y_{1} q\left(x_{1}\right), \ldots, y_{n} q\left(x_{n}\right)\right) \in \mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})$
where p and q are two polynomials of degree at most $k-1$.
$\boldsymbol{c} \star \boldsymbol{c}^{\prime}=\left(y_{1}^{2} p\left(x_{1}\right) q\left(x_{2}\right), \ldots, y_{n}^{2} p\left(x_{n}\right) q\left(x_{n}\right)\right)=\left(y_{1}^{2} r\left(x_{1}\right), \ldots, y_{n}^{2} r\left(x_{n}\right)\right)$
where r is a polynomial of degree $\leqslant 2 k-2$.

$$
\Longrightarrow \boldsymbol{c} \star \boldsymbol{c}^{\prime} \in \mathbf{G R S}_{2 k-1}\left(\boldsymbol{x}, \boldsymbol{y}^{2}\right)
$$

3. Couvreur-Otmani-Tillich: filtration attack

1st polynomial-time attack on McEliece based on certain Goppa codes.
$18 / 40$

A filtration for GRS codes

A new attack on McEliece based on GRS codes. known: $C_{0}=\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})$
unknown: $\boldsymbol{x}, \boldsymbol{y}$.
$C_{0}=\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y}) \supseteq C_{1}=\mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y}) \supseteq \cdots \supseteq C_{k-1}=\mathbf{G R S}(\boldsymbol{x}, \boldsymbol{y})$
The point:

- $C_{k-1}=\left\{\alpha \boldsymbol{y}, \alpha \in \mathbb{F}_{q}\right\}$
- \boldsymbol{y} known $\Rightarrow \boldsymbol{x}$ by solving a linear system.

Square code considerations and the filtration

Assumption: We know $C_{0}=\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})$.
Bold assumption : we also know $C_{1}=\mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y})$
Proposition 1. $C_{2}=\mathbf{G R S}_{k-2}(\boldsymbol{x}, \boldsymbol{y})$ is the set of \boldsymbol{c} satisfying

$$
\left\{\begin{array}{l}
\boldsymbol{c} \in \mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y}) \\
\boldsymbol{c} \star \mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y}) \subseteq \mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y})^{\star 2}
\end{array}\right.
$$

Viewing codewords as polynomials

Consider $\boldsymbol{c} \in \mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y})$, then there exists a polynomial $p(X)$ in $\mathbb{F}_{q}[X]$ of degree $\leqslant k-2$ such that

$$
\begin{aligned}
& c_{i}=y_{i} p\left(x_{i}\right) \\
& \boldsymbol{c} \star \mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y}) \subseteq \mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y})^{\star 2} \\
& \Downarrow \\
&(y_{i} p\left(x_{i}\right) y_{i} \underbrace{q\left(x_{i}\right)}_{\operatorname{deg} \leqslant k-1})_{i} \in \underbrace{\mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y})^{\star 2}}_{\operatorname{deg} \leqslant 2 k-4} \text { for all } q \text { of } \operatorname{deg}<k \\
& \Downarrow \\
& \operatorname{deg} p \leqslant k-3
\end{aligned}
$$

Polynomial point of view

$$
C_{0}=\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y}) \supseteq C_{1}=\mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y}) \supseteq \cdots \supseteq C_{k-1}=\mathbf{G R S}_{1}(\boldsymbol{x}, \boldsymbol{y})
$$

corresponds to

$$
\mathbb{F}_{q}[z]_{<k} \supseteq \mathbb{F}_{q}[z]_{<k-1} \supseteq \cdots \supseteq \mathbb{F}_{q}[z]_{<1}
$$

Elementary linear algebra

Computing a basis of the \boldsymbol{c} satisfying

$$
\left\{\begin{array}{l}
\boldsymbol{c} \in \mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y}) \\
\boldsymbol{c} \star \mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y}) \subseteq \mathbf{G R S} \\
k-1
\end{array}(\boldsymbol{x}, \boldsymbol{y})^{\star 2}\right.
$$

can be done by elementary linear algebra : solving a linear system.

A better filtration

$\mathbf{G R S}_{k-1}(\boldsymbol{x}, \boldsymbol{y})$ unknown, consider instead the filtration corr. to

$$
\mathbb{F}_{q}[z]_{<k} \supseteq z \mathbb{F}_{q}[z]_{<k-1} \supseteq \cdots \supseteq z^{\ell} \mathbb{F}_{q}[z]_{<k-\ell} \supseteq \cdots
$$

The first two terms are known.

- The first $\mathcal{C}=\mathbf{G R S}_{k}(\boldsymbol{x}, \boldsymbol{y})$
- The second: its shortening in the first position (w.l.o.g. we may assume $x_{1}=0$).

$$
\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & a_{11}^{\prime} & \ldots & a_{1, n-1}^{\prime} \\
\vdots & \vdots & & \vdots \\
0 & a_{k-1,1}^{\prime} & \ldots & a_{k-1, n-1}^{\prime}
\end{array}\right)
$$

What about alternant/Goppa codes ?

Definition 1. Let $\boldsymbol{x} \in \mathbb{F}_{q^{m}}^{n}, \boldsymbol{y} \in \mathbb{F}_{q^{m}}^{n}$ be as in the definition of $G R S$ codes. The alternant code $\operatorname{Alt}_{r}(x, y)$ is defined by

$$
\mathbf{A l t}_{r}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=} \mathbf{G R S}_{r}(\boldsymbol{x}, \boldsymbol{y})^{\perp} \cap \mathbb{F}_{q}^{n}
$$

Proposition 1.

$$
\begin{aligned}
\operatorname{dim} \mathbf{A l t}_{r}(\boldsymbol{x}, \boldsymbol{y}) & \geqslant n-m r \\
d_{\min } \mathbf{A l t}_{r}(\boldsymbol{x}, \boldsymbol{y}) & \geqslant r+1
\end{aligned}
$$

Goppa codes

Definition 2. Let $\boldsymbol{x} \in \mathbb{F}_{q^{m}}^{n}$ be a support and $\Gamma \in \mathbb{F}_{q^{m}}[z]$ such that $\forall i, \Gamma\left(x_{i}\right) \neq 0$, then the Goppa code $\operatorname{Gop}(x, \Gamma)$ is defined by

$$
\boldsymbol{\operatorname { G o p }}(\boldsymbol{x}, \Gamma)=\mathbf{A l t}_{\operatorname{deg} \Gamma}(\boldsymbol{x}, \boldsymbol{y})
$$

with $y_{i}=\frac{1}{\Gamma\left(x_{i}\right)}$.
Proposition 2. Its parameters are given by

$$
\begin{aligned}
\operatorname{dim} \operatorname{Gop}(\boldsymbol{x}, \Gamma) & \geqslant n-m \operatorname{deg} \Gamma \\
d_{\min } \mathbf{G o p}(\boldsymbol{x}, \Gamma) & \geqslant \operatorname{deg} \Gamma+1
\end{aligned}
$$

Wild Goppa codes

Theorem 1. [Sugyiama et al. 1978] Let $\boldsymbol{x} \in \mathbb{F}_{q^{m}}^{n}$ and $\gamma \in \mathbb{F}_{q^{m}}[z]$ squarefree, then

$$
\boldsymbol{\operatorname { G o p }}\left(\boldsymbol{x}, \gamma^{q-1}\right)=\boldsymbol{\operatorname { G o p }}\left(\boldsymbol{x}, \gamma^{q}\right)
$$

Such a code is called a wild Goppa code. Parameters :

$$
\begin{aligned}
\operatorname{dim} \boldsymbol{G o p}\left(\boldsymbol{x}, \gamma^{q-1}\right) & \geqslant n-m(q-1) \operatorname{deg} \gamma \\
\mathrm{d}_{\min } \boldsymbol{G o p}\left(\boldsymbol{x}, \gamma^{q-1}\right) & \geqslant q \operatorname{deg} \gamma+1
\end{aligned}
$$

\approx twice the error correction capacity in the binary case!

Distinguishing alternant codes from random codes

We have

$$
\begin{aligned}
\mathbf{A l t}_{r}(\boldsymbol{x}, \boldsymbol{y}) & =\mathbf{G R S}_{r}(\boldsymbol{x}, \boldsymbol{y})^{\perp} \cap \mathbb{F}_{q}^{n} \\
& =\mathbf{G R S}_{n-r}\left(\boldsymbol{x}, \boldsymbol{y}^{\prime}\right) \cap \mathbb{F}_{q}^{n}
\end{aligned}
$$

and

$$
\operatorname{dim} \mathbf{A l t}_{r}(\boldsymbol{x}, \boldsymbol{y}) \geqslant n-m r
$$

Fact 1. To distinguish we need

$$
2(n-r)<n \quad \Longrightarrow \quad r>n / 2
$$

however

$$
m>1 \quad \Longrightarrow n-m r<0
$$

Distinguisher on the dual code

- 2011 Faugère-Gauthier-Otmani-Perret-Tillich : it is possible to distinguish alternant codes of high rate from random codes.
- 2012 Márquez Corbella-Pellikaan : equivalent description of the distinguisher in terms of the square of the dual of the alternant code.

Wild $+m=2$

Theorem 2. [Couvreur, Otmani, Tillich 2013] If $m=2$ and $\gamma \in \mathbb{F}_{q^{2}}[z]$ an irreducible polynomial of degree r

1. $\boldsymbol{G o p}\left(\boldsymbol{x}, \gamma^{q-1}\right)=\boldsymbol{\operatorname { G o p }}\left(\boldsymbol{x}, \gamma^{q+1}\right)$;
2. $\operatorname{dim} \operatorname{Gop}\left(\boldsymbol{x}, \gamma^{q}\right) \geqslant n-\underbrace{m}_{=2} r(q-1)+r(r-2)$

Distinguishing wild Goppa codes for $m=2$

Theorem 3. [Couvreur, Otmani, Tillich 2014] The square of the shortening of such a wild Goppa in a positions has an abnormal dimension when $a \in\left\{a^{-}, \ldots, a^{+}\right\}$and

$$
\left.\begin{array}{l}
a^{-}=n-2 r(q+1)-1 \\
a^{+}=\max \left\{a \geqslant 0 \left\lvert\, \begin{array}{c|c}
3(n-a)-4 r(q+1)-2 \leqslant \\
\min \left\{n-a,\binom{n-a-2 r(q-1)+r(r-2)}{2}\right.
\end{array}\right.\right\}
\end{array}\right\} .\left\{\begin{array}{l|l}
n-1
\end{array}\right.
$$

Figures

Table 1: Largest value of q for which we can distinguish $\operatorname{Gop}\left(\boldsymbol{x}, \gamma^{q-1}\right)$ with γ irreducible of degree r.

r	2	3	4	5
q	9	19	37	64

$32 / 40$

Couvreur-Otmani-Tillich 2014 : filtration attack

Public key \mathcal{C} is a wild Goppa code $\operatorname{Gop}\left(\boldsymbol{x}, \gamma^{q-1}\right)$, with $m=2$.
Fact 2. W.l.o.g. we may assume

$$
x_{0}=0 \quad \text { et } \quad x_{1}=1
$$

Filtration attack, Step 1

By using the same technique as for GRS codes, we compute the filtration

$$
C_{0}=\mathcal{C} \subseteq C_{1} \subseteq \cdots \subseteq C_{q+1}
$$

associated to

$$
\mathbb{F}_{q^{2}}[z]_{<s} \supseteq z \mathbb{F}_{q^{2}}[z]_{<s-1} \supseteq \cdots \supseteq z^{q+1} \mathbb{F}_{q^{2}}[z]_{<s-(q+1)}
$$

where $s=n-r(q+1)$.

$$
C_{0} \star C_{t} \subseteq C_{\lfloor t / 2\rfloor} \star C_{\lceil t / 2\rceil}
$$

Step 2

Lemma 1.

$$
\boldsymbol{x}^{\star(-(q+1))} \star \mathcal{C}_{q+1} \subseteq \mathcal{C} .
$$

Sketch of proof:
Let $\boldsymbol{c} \in \mathcal{C}_{q+1}$ and $p_{\boldsymbol{c}}$ be the corresponding polynomial $p_{\boldsymbol{c}}$ is of the form

$$
p_{c}(z)=z^{q+1} f(z), \quad \operatorname{deg} q_{\boldsymbol{c}} \leqslant s-(q+1)
$$

For all $x \in \mathbb{F}_{q^{2}}, x^{q+1} \in \mathbb{F}_{q}$ (this is $\left.\mathrm{N}_{\mathbb{F}_{q^{2}} / F q}(x)\right)$.
If $x_{i}^{q+1} q\left(x_{i}\right) \in \mathbb{F}_{q}$ for all i, then $q\left(x_{i}\right) \in \mathbb{F}_{q}$ and therefore to q corresponds the codeword $\boldsymbol{x}^{\star-(q+1)} \star \boldsymbol{c} \in \mathcal{C}$

Sketch of the whole attack

- Step 1. Compute

$$
\mathcal{C}=\mathcal{C}_{0} \supseteq \mathcal{C}_{1} \supseteq \mathcal{C}_{2} \supseteq \cdots \supseteq \mathcal{C}_{q+1}
$$

- Step 2. From \mathcal{C}_{q+1}, one can compute $\boldsymbol{x}^{\star(q+1)}=$ $\left(x_{0}^{q+1}, x_{1}^{q+1}, \ldots, x_{n-1}^{q+1}\right)$. (It uses the norm over $\mathbb{F}_{q^{2}}$.)
Reapplying Step 1 and 2, one can also compute: $(\boldsymbol{x}-\mathbf{1})^{\star(q+1)}=$ $\left(\left(x_{0}-1\right)^{q+1},\left(x_{1}-1\right)^{q+1}, \ldots,\left(x_{n-1}-1\right)^{q+1}\right)$
Step 3. Deduce from $\boldsymbol{x}^{\star(q+1)}$ and $(\boldsymbol{x}-\mathbf{1})^{\star(q+1)}$ the support \boldsymbol{x} up to Galois action.
- Step 4. A bit more technique to deduce \boldsymbol{x} and the Goppa Polynomial γ.

Complexity and running time

Complexity : $O\left(n^{4} \sqrt{n}+n^{4}\left(q^{2}-n\right)\right)\left(\right.$ recall that $\left.n \leqslant q^{2}\right)$.
Table 2: Running times with an Intel ${ }^{\circledR}$ Xeon 2.27 GHz

$[q, n, k, r]$	$[29,781,516,5] h$	$[29,791,575,4] h$	$[29,794,529,5] h$
Average time	16 min	19.5 min	15.5 min

(q, n, k, r)	$[31,795,563,4] h$	$[31,813,581,4] h$	$[31,851,619,4] h$
Average time	31.5 min	31.5 min	27.2 min

(q, n, k, r)	$[32,841,601,4] h$	$[31,900,228,14]$
Average time	49.5 min	24 min

Proposed parameters (Bernstein, Lange, Peters 2010)
Never proposed parameters (More than 2^{130} possible choices for γ and security >125 bits with respect to ISD)

The old picture

$38 / 40$

The new picture

$39 / 40$

Conclusion

- Goppa codes are not necessarily immune to square code attacks.
- Distinguisher \Rightarrow attack.
- Question : are other distingushable codes breakable? For instance high rate Goppa codes (distinguisher on the dual).
- Polynomial time attacks on Reed-Muller codes ?
- Polynomial time attacks on subcodes of algebraic geometry codes?
- other families of codes (MDPC,. . .)?

