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introduction

1. The McEliece cryptosystem

I 1978 McEliece cryptosystem based on Goppa codes.

• Secret Key : A generator matrix G of an [n, k]q code C having

an efficient t–correcting algorithm;

• Public Key : G′ := SGP , where S ∈ GL(k,Fq) and P is an

n× n permutation matrix;

• Encryption : m ∈ Fk
q 7−→ y

def
= mG′ + e with |e| = t.

• Decryption : y 7−→ yP−1 = mSG + eP−1 7−→
mS 7−→ m.
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introduction

Advantages/drawbacks

Advantages

• Post Quantum;

• Efficient encryption and decryption (compared to RSA, El Gamal):

the original McEliece has encryption ≈ 5 times faster than RSA

1024, decryption ≈ 150 times faster than RSA 1024.

Drawbacks

• Huge size of the keys: the original proposal (McEliece 1978) has a

67ko key (more than 500 times RSA 1024 for a similar security).
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Variants based on generalized Reed-Solomon codes
I 1986 Niederreiter variant based on GRS codes.

I 1992 Sidelnikov-Shestakov attack.

I 2006 Wieschebrink, reparation of the Niederreiter scheme by

adding random columns to the generator matrix.

I 2011 Baldi-Bianchi-Chiaraluce-Rosenthal-Schipani, reparation of

the Niederreiter scheme by changing the permutation matrix Π

into Π +R where R is of rank one.

I 2011, Bogdnanov-Lee, homomorphic public-key encryption scheme

based on Reed-Solomon codes.

I 2013, Couvreur-Gaborit-Gauthier-Otmani-Tillich, attack on all

these variants based on square code considerations.

I 2013 Couvreur-Gaborit-Gauthier-Otmani-Tillich, filtration attack

on GRS codes.
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Binary Goppa

GRS
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introduction

Variants based on subcodes of generalized
Reed-Solomon codes.

I 2005 Berger-Loidreau : subcodes of generalized Reed-Solomon

codes.

I 2010 Wieschebrink : attack by square code considerations.
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Binary Goppa

GRS

subcodes of GRS codes
subfield subcodes of GRS codes
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introduction

Variants based on algebraic geometric codes

I 1996 : proposed by Janwa-Moreno.

I 2008 : Attacked by Faure-Minder for hyperelliptic curves of genus

6 2.

I 2014 : Attacked in general by recovering an error-correcting

pair from square code and filtration considerations by Couvreur-

Màrquez Corbella-Pellikaan.
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subfield subcodes of GRS codes
algebraic geometry codesGRS

subcodes of GRS codes

Binary Goppa
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introduction

Variants based on Reed-Muller codes.

I 1994 Suggested by Sidelnikov.

I 2007 Attack by Minder-Shokrollahi in sub-exponential time by

recovering the structure from minimal codewords.

I 2013 Chizhov-Borodin refinement of the attack by square code

considerations.
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introduction

Alternant/Goppa codes with symmetry

I 2005 Gaborit : quasi-cyclic subcodes of BCH codes.

I 2007 Otmani-Tillich-Dallot : attack.

I 2009 Berger-Cayrel-Gaborit-Otmani : quasi-cyclic alternant codes.

I 2009 Misoczki-Barreto : quasi-dyadic Goppa codes.

I 2010 Faugère-Otmani-Perret-Tillich/Gauthier-Leander : almost

all 2009 schemes were broken with an algebraic attack (possible

because of the reduction of the number of unknowns).
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Other variants

I 199. a zillion propositions with LDPC codes.

I 2000 Monico-Rosenthal-Shokrollahi : attack.

I 2007: Baldi-Chiaraluce“repairing” the LDPC schemes by taking

sums of permutation matrices.

I 2007 Otmani-Tillich-Dallot : attack.

I 2008 Baldi-Bodrato-Chiaraluce : a new version.

I 2012 Misoczki-Tillich-Barreto-Sendrier : MDPC codes.

I 2012 Löndahl-Johansson : convolutional codes.

I 2013 Landais-Tillich : attack.
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2. Algebraic attacks through square codes
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GRS codes

Generalized Reed-Solomon codes

Definition 1. [Generalized Reed-Solomon code] Let k and n be

integers such that 1 6 k < n 6 q where q is a power of a

prime number. The generalized Reed-Solomon code GRSk(x,y)

of dimension k is associated to a pair (x,y) ∈ Fn
q × Fn

q where x is

an n-tuple of distinct elements of Fq and the entries yi are arbitrary

nonzero elements in Fq. GRSk(x,y) is defined as:

GRSk(x,y)
def
=
{

(y1p(x1), . . . , ynp(xn)) : p ∈ Fq[X],deg p < k
}
.

x is the support and y the multiplier.

[Sidelnikov-Shestakov1992]: recover from an arbitrary generator

matrix of a GRS code C, a tuple (x,y) such that C = GRS(x,y)

(all what is needed to decode C efficiently).
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GRS codes

The square code

Definition 2. [Componentwise product] Given two vectors a =

(a1, . . . , an) and b = (b1, . . . , bn) ∈ Fn
q , we denote by a ? b the

componentwise product

a ? b
def
= (a1b1, . . . , anbn)

Definition 3. [Product of codes & square code] The star product

code denoted by A ? B of A and B is the vector space spanned by

all products a ? b where a and b range over A and B respectively.

When B = A, A ? A is called the square code of A and is rather

denoted by A2.
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GRS codes

Dimension of the square code

A and B codes with respective bases (ai) and (bj).

1. dim(A ?B) 6 dim(A) dim(B) (generated by the ai ? bj’s)

2. dim(A2) 6

(
dim(A) + 1

2

)
(generated by the ai ?aj’s with i 6 j)
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GRS codes

What is wrong with generalized Reed-Solomon
codes ?

When C is a random code of length n, with high probability

dim(C2) = min

{(
dim(C) + 1

2

)
, n

}
When C is a generalized Reed-Solomon code

dim(C2) = min {2 dim(C)− 1, n}
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GRS codes

The explanation

c = (y1p(x1), . . . , ynp(xn)), c′ = (y1q(x1), . . . , ynq(xn)) ∈ GRSk(x,y)

where p and q are two polynomials of degree at most k − 1.

c?c′ =
(
y2

1p(x1)q(x2), . . . , y2
np(xn)q(xn)

)
=
(
y2

1r(x1), . . . , y2
nr(xn)

)
where r is a polynomial of degree 6 2k − 2.

=⇒ c ? c′ ∈ GRS2k−1(x,y2)
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filtration

3. Couvreur-Otmani-Tillich : filtration attack

1st polynomial-time attack on McEliece based on certain Goppa

codes.
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filtration

A filtration for GRS codes

A new attack on McEliece based on GRS codes.

known : C0 = GRSk(x,y)

unknown : x,y.

C0 = GRSk(x,y) ⊇ C1 = GRSk−1(x,y) ⊇ · · · ⊇ Ck−1 = GRS1(x,y)

The point:

• Ck−1 = {αy, α ∈ Fq}

• y known ⇒ x by solving a linear system.
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filtration

Square code considerations and the filtration

Assumption : We know C0 = GRSk(x,y).

Bold assumption : we also know C1 = GRSk−1(x,y)

Proposition 1. C2 = GRSk−2(x,y) is the set of c satisfying{
c ∈ GRSk−1(x,y)

c ? GRSk(x,y) ⊆ GRSk−1(x,y)?2
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filtration

Viewing codewords as polynomials

Consider c ∈ GRSk−1(x,y), then there exists a polynomial p(X)

in Fq[X] of degree 6 k − 2 such that

ci = yip(xi)

c ? GRSk(x,y) ⊆ GRSk−1(x,y)?2

⇓
(yip(xi)yi q(xi)︸ ︷︷ ︸

deg6k−1

)i ∈ GRSk−1(x,y)?2︸ ︷︷ ︸
deg62k−4

for all q of deg < k

⇓
deg p 6 k − 3
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filtration

Polynomial point of view

C0 = GRSk(x,y) ⊇ C1 = GRSk−1(x,y) ⊇ · · · ⊇ Ck−1 = GRS1(x,y)

corresponds to

Fq[z]<k ⊇ Fq[z]<k−1 ⊇ · · · ⊇ Fq[z]<1
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filtration

Elementary linear algebra

Computing a basis of the c satisfying{
c ∈ GRSk−1(x,y)

c ? GRSk(x,y) ⊆ GRSk−1(x,y)?2

can be done by elementary linear algebra : solving a linear system.
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filtration

A better filtration
GRSk−1(x,y) unknown, consider instead the filtration corr. to

Fq[z]<k ⊇ zFq[z]<k−1 ⊇ · · · ⊇ z`Fq[z]<k−` ⊇ · · ·

The first two terms are known.

• The first C = GRSk(x,y)

• The second: its shortening in the first position ( w.l.o.g. we may

assume x1 = 0). 
1 ∗ . . . ∗
0 a′11 . . . a′1,n−1
... ... ...

0 a′k−1,1 . . . a′k−1,n−1


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Goppa

What about alternant/Goppa codes ?

Definition 1. Let x ∈ Fn
qm,y ∈ Fn

qm be as in the definition of GRS

codes. The alternant code Altr(x,y) is defined by

Altr(x,y)
def
= GRSr(x,y)⊥ ∩ Fn

q

Proposition 1.

dim Altr(x,y) > n−mr
dminAltr(x,y) > r + 1
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Goppa

Goppa codes

Definition 2. Let x ∈ Fn
qm be a support and Γ ∈ Fqm[z] such that

∀i,Γ(xi) 6= 0, then the Goppa code Gop(x,Γ) is defined by

Gop(x,Γ) = Altdeg Γ(x,y),

with yi = 1
Γ(xi)

.

Proposition 2. Its parameters are given by

dim Gop(x,Γ) > n−m deg Γ

dminGop(x,Γ) > deg Γ + 1
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Goppa

Wild Goppa codes

Theorem 1. [Sugyiama et al. 1978] Let x ∈ Fn
qm and γ ∈ Fqm[z]

squarefree, then

Gop(x, γq−1) = Gop(x, γq)

Such a code is called a wild Goppa code. Parameters :

dim Gop(x, γq−1) > n−m(q − 1) deg γ

dminGop(x, γq−1) > q deg γ + 1.

≈ twice the error correction capacity in the binary case!
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Goppa

Distinguishing alternant codes from random codes

We have

Altr(x,y) = GRSr(x,y)⊥ ∩ Fn
q

= GRSn−r(x,y
′) ∩ Fn

q

and

dim Altr(x,y) > n−mr.

Fact 1. To distinguish we need

2(n− r) < n =⇒ r > n/2,

however

m > 1 =⇒ n−mr < 0.
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Goppa

Distinguisher on the dual code

I 2011 Faugère-Gauthier-Otmani-Perret-Tillich : it is possible to

distinguish alternant codes of high rate from random codes.

I 2012 Márquez Corbella-Pellikaan : equivalent description of the

distinguisher in terms of the square of the dual of the alternant

code.
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Goppa

Wild + m = 2

Theorem 2. [Couvreur , Otmani, Tillich 2013] If m = 2 and

γ ∈ Fq2[z] an irreducible polynomial of degree r

1. Gop(x, γq−1) = Gop(x, γq+1);

2. dim Gop(x, γq) > n− m︸︷︷︸
=2

r(q − 1) + r(r − 2)
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Goppa

Distinguishing wild Goppa codes for m = 2

Theorem 3. [Couvreur, Otmani, Tillich 2014] The square of the

shortening of such a wild Goppa in a positions has an abnormal

dimension when a ∈ {a−, . . . , a+} and

a− = n− 2r(q + 1)− 1

a+ = max

{
a > 0

∣∣∣∣∣ 3(n− a)− 4r(q + 1)− 2 6

min
{
n− a,

(
n−a−2r(q−1)+r(r−2)

2

)} }
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Goppa

Figures

Table 1: Largest value of q for which we can distinguish Gop(x, γq−1)

with γ irreducible of degree r.
r 2 3 4 5

q 9 19 37 64
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filtration

Couvreur-Otmani-Tillich 2014 : filtration attack

Public key C is a wild Goppa code Gop(x, γq−1), with m = 2.

Fact 2. W.l.o.g. we may assume

x0 = 0 et x1 = 1.
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filtration

Filtration attack, Step 1

By using the same technique as for GRS codes, we compute the

filtration

C0 = C ⊆ C1 ⊆ · · · ⊆ Cq+1

associated to

Fq2[z]<s ⊇ zFq2[z]<s−1 ⊇ · · · ⊇ zq+1Fq2[z]<s−(q+1)

where s = n− r(q + 1).

C0 ? Ct ⊆ Cbt/2c ? Cdt/2e
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filtration

Step 2

Lemma 1.
x?(−(q+1)) ? Cq+1 ⊆ C.

Sketch of proof :

Let c ∈ Cq+1 and pc be the corresponding polynomial pc is of the

form

pc(z) = zq+1f(z), deg qc 6 s− (q + 1).

For all x ∈ Fq2, xq+1 ∈ Fq (this is NF
q2/Fq(x)).

If xq+1
i q(xi) ∈ Fq for all i, then q(xi) ∈ Fq and therefore to q

corresponds the codeword x?−(q+1) ? c ∈ C
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filtration

Sketch of the whole attack

• Step 1. Compute

C = C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cq+1

• Step 2. From Cq+1, one can compute x?(q+1) =

(xq+1
0 , xq+1

1 , . . . , xq+1
n−1). (It uses the norm over Fq2.)

Reapplying Step 1 and 2, one can also compute: (x− 1)?(q+1) =

((x0 − 1)q+1, (x1 − 1)q+1, . . . , (xn−1 − 1)q+1)

Step 3. Deduce from x?(q+1) and (x− 1)?(q+1) the support x up

to Galois action.

• Step 4. A bit more technique to deduce x and the Goppa

Polynomial γ.
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filtration

Complexity and running time

Complexity : O(n4
√
n+ n4(q2 − n)) (recall that n 6 q2).

Table 2: Running times with an Intel R© Xeon 2.27GHz
[q, n, k, r] [29,781, 516,5] h [29, 791, 575, 4] h [29,794,529,5] h

Average time 16min 19.5min 15.5min

(q, n, k, r) [31, 795, 563, 4] h [31,813, 581,4] h [31, 851, 619, 4] h

Average time 31.5min 31.5min 27.2min

(q, n, k, r) [32,841,601,4] h [31, 900, 228, 14]

Average time 49.5min 24min

Proposed parameters (Bernstein, Lange, Peters 2010)

Never proposed parameters (More than 2130 possible choices for γ

and security > 125 bits with respect to ISD)
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The old picture

codes

subcodes of GRS codes

subfield subcodes of GRS codes

Binary Goppa

algebraic geometry codesGRS
wild Goppa
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The new picture

Binary Goppa

algebraic geometry codesGRS
wild Goppa
codes

subcodes of GRS codes

subfield subcodes of GRS codes
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Conclusion

• Goppa codes are not necessarily immune to square code attacks.

• Distinguisher ⇒ attack.

• Question : are other distingushable codes breakable? For instance

high rate Goppa codes (distinguisher on the dual).

• Polynomial time attacks on Reed-Muller codes ?

• Polynomial time attacks on subcodes of algebraic geometry codes?

• other families of codes (MDPC,. . . )?
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