Compact Diffie-Hellman key exchange with efficient endomorphisms

Benjamin Smith

Team **GRACE**

INRIA Saclay–Île-de-France Laboratoire d'Informatique de l'École polytechnique (LIX)

> YACC 2014, Porquerolles June 12, 2014

Smith (INRIA/LIX)

For the next hour,

- q is a power of a prime p > 3
 - Everything is defined over \mathbb{F}_q (unless otherwise noted)
- All abelian varieties are ordinary (not supersingular)

Diffie–Hellman Key Exchange

Original scheme: $G \subset \mathbb{F}_q^{\times}$

Compute $P \mapsto [m]P := P^m$ via chain of squares & mults

To break CDHP $(P, [a]P, [b]P) \mapsto [ab]P$: subexponential solution using index calculus Recent developments \implies q must be prime

q prime: solve CHDP with Number Field Sieve variant \implies key sizes and computational costs scale like RSA 128-bit security (\equiv basic AES): need 3000-bit *q*

$\implies \mathbb{F}_q^{\times}$ is slow and inefficient

Elliptic curves: $By^2 = x(x^2 + Ax + 1)$.

Compute $P \mapsto [m]P$ via chain of doubles & adds

 $\begin{aligned} x(P \oplus Q) &:= BF_{\oplus}(P,Q)^2 - (x(P) + x(Q) + A) \\ y(P \oplus Q) &:= (2x(P) + x(Q) + A)F_{\oplus}(P,Q) - BF_{\oplus}(P,Q)^3 - y(P) \\ & \text{where } F_{\oplus}(P,Q) &:= (y(Q) - y(P))/(x(Q) - x(P)) \text{ , while} \\ x([2]P) &:= BF_2(P)^2 - (2x(P) + A) \\ y([2]P) &:= (3x(P) + A)F_2(P) - BF_2(P)^3 - y(P) \\ & \text{where } F_2(P) &:= (3x(P)^2 + 2Ax(P) + 1)/(2By(P)) \text{ .} \end{aligned}$

Exponential CDHP (Pollard ρ) \implies shorter keys & chains

eg. 128-bit security (\simeq AES): 256-bit q (vs 3k-bit for \mathbb{G}_m)

Look again:

Focus: scalar multiplication $P \mapsto [m]P$, not group law \oplus .

In fact: we don't care if \mathcal{G} is not a group!

Smith (INRIA/LIX)

Compact DH with endomorphisms

Modern Diffie-Hellman

- *G* is a large set (with no proper group operation!)
- [a], [b] ∈ large set of easy commuting maps G → G with a hard CHDP (given P, [a]P, [b]P, find [ab]P)

Montgomery's observation

If P and Q are points on $\mathcal{E}: By^2 = x(x^2 + Ax + 1)$, then

$$\begin{aligned} x(P \oplus Q)x(P \ominus Q) &= \frac{(x(P)x(Q) - 1)^2}{(x(P) - x(Q))^2} \\ \text{and} \quad x([2]P) &= \frac{(x(P) - 1)^2}{4x(P)(x(P)^2 + Ax(P) + 1)} \\ \text{Notice: } B \text{ and } y \text{ are gone!} \end{aligned}$$

Use differential addition chains, where $P \oplus Q$ only appears if $P \oplus Q$ appeared previously \implies compute $[m]_* : x(P) \mapsto x([m]P)$ using only x-coord

Smith (INRIA/LIX)

Montgomery arithmetic

 $[m]_*: x =: X_1/Z_1 \longmapsto X_m/Z_m$ for any $m \in \mathbb{Z}$

where we compute $(X_m : Z_m)$ using a differential chain based on • Pseudo-addition (6M + 4A) where $r \neq s$:

$$X_{r+s} = Z_{r-s} \left[(X_r - Z_r)(X_s + Z_s) + (X_r + Z_r)(Z_s - Z_s) \right]^2$$

$$Z_{r+s} = X_{r-s} \left[(X_r - Z_r)(X_s + Z_s) - (X_r + Z_r)(Z_s - Z_s) \right]^2$$

• Pseudo-doubling (5M + 4A):

$$\begin{split} X_{2r} &= (X_r + Z_r)^2 (X_r - Z_r)^2 \\ Z_{2r} &= (4X_r Z_r) \left[(X_r - Z_r)^2 + \frac{A+2}{4} \cdot (4X_r Z_r) \right] \\ \text{where } 4X_r Z_r &= (X_r + Z_r)^2 - (X_r - Z_r)^2. \end{split}$$

If $\omega = x(P)$ for P in $\mathcal{E}(\overline{\mathbb{F}}_q)$, then $[m]_*(\omega) = x([m]P)$.

Quadratic twist of $\mathcal{E} : By^2 = x(x^2 + Ax + 1)$: any $\mathcal{E}' : B'y^2 = x(x^2 + Ax + 1)$ where B'/B is not a square in \mathbb{F}_q .

> The maps $[m]_*$ depend on A but not B (or B') $\implies [m]_*$ is identical for \mathcal{E} and \mathcal{E}' .

For every $\omega \in \mathbb{F}_q$, either • $\omega = x(P)$ for some $P \in \mathcal{E}(\mathbb{F}_q)$ and $[m]_*(\omega) = x([m]P)$, or • $\omega = x(P')$ for some $P' \in \mathcal{E}'(\mathbb{F}_q)$ and $[m]_*(\omega) = x([m]P')$. Conclusion: $[a]_* : \mathbb{F}_q \to \mathbb{F}_q$ and $[b]_* : \mathbb{F}_q \to \mathbb{F}_q$ commute for all a, b in \mathbb{Z} . If $\omega = x(P)$, then $[m]_*(\omega) = x([m]P)$.

Given ω , $[a]_*(\omega)$, $[b]_*(\omega)$, find $[ab]_*(\omega)$ (pseudo-CDHP):

- lift to $\mathcal{E}(\mathbb{F}_q)$ if $\omega = x(P)$ for some P in $\mathcal{E}(\mathbb{F}_q)$
- lift to $\mathcal{E}'(\mathbb{F}_q)$ if $\omega = x(P')$ for some P' in $\mathcal{E}'(\mathbb{F}_q)$. Hence, both $\mathcal{E}(\mathbb{F}_q)$ and $\mathcal{E}'(\mathbb{F}_q)$ must be secure.

State-of-the-Art Diffie-Hellman

- $\mathcal{G} = \mathbb{F}_q$ (not viewed as a group!)
- secret [a]_{*}, [b]_{*} from random a, b in O(q) and twist-secure E : By² = x(x² + Ax + 1) over 𝔽_q
- Example: Bernstein's Curve25519 software.

The challenge: Go faster.

Endomorphisms

Suppose \mathcal{E}/\mathbb{F}_q is an elliptic curve, \mathcal{E}' its quadratic twist.

Endomorphisms: algebraic maps $\phi : \mathcal{E} \to \mathcal{E}$ such that $\phi(P \oplus Q) = \phi(P) \oplus \phi(Q)$ for all P, Q in \mathcal{E} .

Examples: [m] for m in \mathbb{Z} , Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$.

General form:
$$\phi : (x, y) \mapsto (\phi_*(x), y \cdot \mu \frac{d\phi_*}{dx}(x))$$

for some ϕ_* in $\mathbb{F}_q(x)$, μ in \mathbb{F}_q .

- The endomorphisms form a (quadratic imaginary) ring, $\operatorname{End}(\mathcal{E})$
- $\mathbb{Z}[\pi] \subseteq \operatorname{End}(\mathcal{E})$
- $\operatorname{End}(\mathcal{E}) \cong \operatorname{End}(\mathcal{E}')$
- If $\phi \in \operatorname{End}(\mathcal{E})$, then the corresponding $\phi' \in \operatorname{End}(\mathcal{E}')$ satisfies $\phi_* = \phi'_*$

Suppose $\phi \in \text{End}(\mathcal{E})$ is efficient and defined $/\mathbb{F}_q$ ("efficient" = compute $P \mapsto \phi(P)$ in $O(1) \mathbb{F}_q$ -operations)

Suppose $\mathcal{G} \cong \mathbb{Z}/N\mathbb{Z}$ and $\mathcal{G}' \cong \mathbb{Z}/N'\mathbb{Z}$ are large subgroups of $\mathcal{E}(\mathbb{F}_q)$ and $\mathcal{E}'(\mathbb{F}_q)$, respectively. $\implies \phi(\mathcal{G}) \subseteq \mathcal{G}$ and $\phi'(\mathcal{G}) \subseteq \mathcal{G}'$

 $\implies \begin{cases} \phi(P) = [\lambda]P \ \forall P \in \mathcal{G} & \text{for some } \lambda \bmod N \\ \phi'(P') = [\lambda']P' \ \forall P' \in \mathcal{G}' & \text{for some } \lambda' \bmod N' \end{cases}$

$$\implies \phi_*(\omega) = \phi'_*(\omega) = \begin{cases} [\lambda]_*(\omega) & \text{if } \omega \in x(\mathcal{E}(\mathbb{F}_q)) \\ [\lambda']_*(\omega) & \text{if } \omega \in x(\mathcal{E}'(\mathbb{F}_q)) \end{cases}$$

Scalar decompositions on ${\mathcal E}$

Suppose ϕ has eigenvalue λ on $\mathcal{G} \subseteq \mathcal{E}(\mathbb{F}_q)$.

To compute [m]P for P in \mathcal{G} :

• Compute m_0 and m_1 st $m \equiv m_0 + m_1 \lambda \pmod{N}$ [easy]

- Compute $[m]P = [m_0]P \oplus [m_1]\phi(P)$ using (simultaneous) multiexponentiation: chain length $\sim \max(\log_2 |m_i|)$.
- If $|\lambda| \ge \sqrt{N}$, then max $(\log_2 |m_i|) = \frac{1}{2} \log_2 N + \epsilon$.

Converse: sample (m_0, m_1) from $O(\sqrt{N})^2$, $\implies [m_0]P \oplus [m_1]\phi(P) \approx$ random element of \mathcal{G}

Efficient ϕ ? deg $\phi = \deg_{sep} \phi \cdot \deg_{insep} \phi$.

- $\mathsf{deg}_{\mathrm{insep}} \longleftrightarrow$ contribution of *p*-th powering (virtually free)
- $\bullet \mbox{ deg}_{\rm sep} \longleftrightarrow \mbox{ complexity of defining polynomials} \longleftrightarrow \mbox{ efficiency}$

Scalar decompositions on the x-line

We want to compute $x([m_0]P \oplus [m_1]\phi(P))$ from x(P).

2-dim. differential addition chains: can compute $x([m_0]P \oplus [m_1]Q)$ from x(P), x(Q), $x(P \ominus Q)$

So: we need x(P), $x(\phi(P))$, $x(P \ominus \phi(P))$

Naïve: start with $P \in \mathcal{E}(\mathbb{F}_q)$; compute $\phi(P)$ and $P \ominus \phi(P)$; then launch chain on *x*-coords.

Better: $1 - \phi$ is an endomorphism; compute $(1 - \phi)_*$. Use $x(P \ominus \phi(P)) = (1 - \phi)_*(x(P))$.

D–H with x-line endomorphisms

Public parameters: $\omega \in \mathbb{F}_q$, twist-secure \mathcal{E}/\mathbb{F}_q with efficient ϕ

- Aubry randomly samples a ∈ O(q) a₀, a₁ ∈ O(√q); computes & publishes A = [a]_{*}(ω) A = ([a₀] ⊕ [a₁]φ)_{*}(ω) using differential addition chain on ω, φ_{*}(ω), (1 − φ)_{*}(ω)
- Ballet randomly samples b ∈ O(q) b₀, b₁ ∈ O(√q); computes & publishes B = [b]_{*}(ω) B = ([b₀] ⊕ [b₁]φ)_{*}(ω) using differential addition chain on ω, φ_{*}(ω), (1 − φ)_{*}(ω)
- Aubry computes secret $\frac{K = [a]_*(B)}{W} K = ([a_0] \oplus [a_1]\phi)_*(B)$ using differential addition chain on $B, \phi_*(B), (1 - \phi)_*(B)$
- Ballet computes secret $\frac{K = [b]_*(A)}{K} K = ([b_0] \oplus [b_1]\phi)_*(A)$ using differential addition chain on $A, \phi_*(A), (1 - \phi)_*(A)$

GLV (Gallant-Lambert-Vanstone, CRYPTO 2001)

Fast endomorphisms from CM curves with tiny CM discriminants. Fast because $\deg_{sep}(\phi) = tiny$ and $\deg_{insep}(\phi) = 1$. Example:

$$\mathcal{E}: y^2 = x(x^2 + 1)$$

 $\phi: (x, y) \longmapsto (-x, \sqrt{-1}y).$

Applying GLV endomorphisms to the *x*-line:

$$\phi_*: \mathbf{x} \longmapsto -\mathbf{x}$$
 [fast]

$$(1-\phi)_*: x \longmapsto rac{\sqrt{-1}}{2}(x+1/x)$$
 [fast]

Disadvantage (major): GLV curves are impossibly rare \implies generally no secure curves $/\mathbb{F}_p$ for efficient p.

GLS (Galbraith-Lin-Scott, EUROCRYPT 2009)

Fast endomorphisms from twists of subfield curves over \mathbb{F}_{p^2} : the fast endomorphism is a twisted sub-Frobenius. Example: take any A_0 in \mathbb{F}_p , $p \equiv 3 \pmod{4}$

$$\mathcal{E}: y^2 = x(x^2 + A_0\sqrt{-1}x + 1)$$

 $\phi: (x, y) \mapsto (-x^p, iy^p)$

- Fast because $\deg_{ ext{sep}}(\phi) = 1$, and $\deg_{ ext{sep}}(\phi) = p$
- Advantage: O(p) GLS curves over any 𝔽_{p²}:
 ⇒ can find secure curves over fast 𝔽_{p²}
- Disadvantage: GLS curves are catastrophically twist-insecure by construction (their twists are subfield curves)
 - \implies unsuitable for Diffie-Hellman

\mathbb{Q} -curve reductions (S., ASIACRYPT 2013)

Reduce low degree \mathbb{Q} -curve families modulo inert primes p to get $\mathcal{E}, \phi/\mathbb{F}_{p^2}$ with deg_{sep} $(\phi) = \text{tiny, deg}_{insep}(\phi) = p$.

Example: Take any $\mathbb{F}_{p^2} = \mathbb{F}_p(\sqrt{\Delta})$. For every $t \in \mathbb{F}_p$, the curve

$$\mathcal{E}_t / \mathbb{F}_{p^2} : y^2 = x^3 - 6(5 - 3t\sqrt{\Delta})x + 8(7 - 9t\sqrt{\Delta})$$

has an efficient (faster than doubling) endomorphism

$$\phi: (x,y) \longmapsto \left(f(x^p), \frac{y^p}{\sqrt{-2}}f'(x^p)\right) \text{ where } f(x^p) = \frac{-x^p}{2} - \frac{9(1-t\sqrt{\Delta})}{(x^p-4)}$$

We have $\phi^2 = [\pm 2]\pi$, so $\lambda_{\phi} = \pm \sqrt{\pm 2}$ on cryptographic subgroups.

On the x-line: $\phi_*(x) = f(x^p)$ is fast, but $(1 - \phi)_*(x) =$ quartic beark with a (p + 1)/2-powering in \mathbb{F}_{p^2} .

Implementation: Costello-Hisil-S. (EUROCRYPT 2014)

C/Assembly implementation targeting 128-bit security level Platform: Intel Ivy Bridge

Based on \mathbb{Q} -curve reduction over \mathbb{F}_{p^2} with $p = 2^{127} - 1$

For comparison, without endomorphisms:

Montgomery ladder (uniform, const. time) same curve: 159 kCycles Curve25519 (uniform, const. time), 182 kCycles

Chain	unif.	const.	steps	per step		l.C. alas
		time	/128	\oplus	[2]	K Cycles
PRAC	NO	NO	~ 0.9	~ 1.6	~ 0.6	109
A-K	YES	NO	~ 1.4	1	1	133
Bernstein	YES	YES	1	2	1	148

Next challenge: *Go faster, cleaner*