Compact Diffie-Hellman key exchange with efficient endomorphisms

Benjamin Smith

Team GRACE
INRIA Saclay-Île-de-France
Laboratoire d'Informatique de l'École polytechnique (LIX)

YACC 2014, Porquerolles
June 12, 2014

For the next hour,

q is a power of a prime $p>3$ Everything is defined over \mathbb{F}_{q} (unless otherwise noted)

All abelian varieties are ordinary
(not supersingular)

Diffie-Hellman Key Exchange

Original scheme: $G \subset \mathbb{F}_{q}^{\times}$

Compute $P \mapsto[m] P:=P^{m}$ via chain of squares \& mults

$$
\text { To break CDHP }(P,[a] P,[b] P) \mapsto[a b] P:
$$ subexponential solution using index calculus Recent developments $\Longrightarrow q$ must be prime

q prime: solve CHDP with Number Field Sieve variant \Longrightarrow key sizes and computational costs scale like RSA 128-bit security (\equiv basic AES): need 3000-bit q

$$
\Longrightarrow \mathbb{F}_{q}^{\times} \text {is slow and inefficient }
$$

Elliptic curves: $B y^{2}=x\left(x^{2}+A x+1\right)$.

Compute $P \mapsto[m] P$ via chain of doubles \& adds

$$
\begin{aligned}
& x(P \oplus Q):=B F_{\oplus}(P, Q)^{2}-(x(P)+x(Q)+A) \\
& y(P \oplus Q):=(2 x(P)+x(Q)+A) F_{\oplus}(P, Q)-B F_{\oplus}(P, Q)^{3}-y(P) \\
& \text { where } F_{\oplus}(P, Q):=(y(Q)-y(P)) /(x(Q)-x(P)), \text { while } \\
& x([2] P):=B F_{2}(P)^{2}-(2 x(P)+A) \\
& y([2] P):=(3 x(P)+A) F_{2}(P)-B F_{2}(P)^{3}-y(P) \\
& \quad \text { where } F_{2}(P):=\left(3 x(P)^{2}+2 A x(P)+1\right) /(2 B y(P)) .
\end{aligned}
$$

Exponential CDHP (Pollard ρ) \Longrightarrow shorter keys \& chains eg. 128 -bit security $\left(\simeq\right.$ AES): 256 -bit q (vs 3 k-bit for \mathbb{G}_{m})

Look again:

Focus: scalar multiplication $P \mapsto[m] P$, not group law \oplus.

In fact: we don't care if \mathcal{G} is not a group!

Modern Diffie-Hellman

- \mathcal{G} is a large set (with no proper group operation!)
- $[a],[b] \in$ large set of easy commuting maps $\mathcal{G} \rightarrow \mathcal{G}$ with a hard CHDP (given $P,[a] P,[b] P$, find $[a b] P$)

Montgomery's observation

If P and Q are points on $\mathcal{E}: B y^{2}=x\left(x^{2}+A x+1\right)$, then

$$
\begin{aligned}
x(P \oplus Q) x(P \ominus Q) & =\frac{(x(P) x(Q)-1)^{2}}{(x(P)-x(Q))^{2}} \\
\text { and } \quad x([2] P) & =\frac{(x(P)-1)^{2}}{4 x(P)\left(x(P)^{2}+A x(P)+1\right)}
\end{aligned}
$$

Notice: B and y are gone!
Use differential addition chains, where $P \oplus Q$ only appears if $P \ominus Q$ appeared previously \Longrightarrow compute $[m]_{*}: x(P) \mapsto x([m] P)$ using only x-coord

Montgomery arithmetic

$$
[m]_{*}: x=: X_{1} / Z_{1} \longmapsto X_{m} / Z_{m} \quad \text { for any } m \in \mathbb{Z}
$$

where we compute $\left(X_{m}: Z_{m}\right)$ using a differential chain based on

- Pseudo-addition $(6 \mathrm{M}+4 \mathrm{~A})$ where $r \neq s$:

$$
\begin{aligned}
& X_{r+s}=Z_{r-s}\left[\left(X_{r}-Z_{r}\right)\left(X_{s}+Z_{s}\right)+\left(X_{r}+Z_{r}\right)\left(Z_{s}-Z_{s}\right)\right]^{2} \\
& Z_{r+s}=X_{r-s}\left[\left(X_{r}-Z_{r}\right)\left(X_{s}+Z_{s}\right)-\left(X_{r}+Z_{r}\right)\left(Z_{s}-Z_{s}\right)\right]^{2}
\end{aligned}
$$

- Pseudo-doubling ($5 \mathrm{M}+4 \mathrm{~A}$):

$$
\begin{aligned}
& X_{2 r}=\left(X_{r}+Z_{r}\right)^{2}\left(X_{r}-Z_{r}\right)^{2} \\
& Z_{2 r}=\left(4 X_{r} Z_{r}\right)\left[\left(X_{r}-Z_{r}\right)^{2}+\frac{A+2}{4} \cdot\left(4 X_{r} Z_{r}\right)\right] \\
& \text { where } 4 X_{r} Z_{r}=\left(X_{r}+Z_{r}\right)^{2}-\left(X_{r}-Z_{r}\right)^{2} .
\end{aligned}
$$

If $\omega=x(P)$ for P in $\mathcal{E}\left(\overline{\mathbb{F}}_{q}\right)$, then $[m]_{*}(\omega)=x([m] P)$.

Quadratic twist of $\mathcal{E}: B y^{2}=x\left(x^{2}+A x+1\right)$:
any $\mathcal{E}^{\prime}: B^{\prime} y^{2}=x\left(x^{2}+A x+1\right)$ where B^{\prime} / B is not a square in \mathbb{F}_{q}.
The maps $[m]_{*}$ depend on A but not B (or B^{\prime})
$\Longrightarrow[m]_{*}$ is identical for \mathcal{E} and \mathcal{E}^{\prime}.
For every $\omega \in \mathbb{F}_{q}$, either

- $\omega=x(P)$ for some $P \in \mathcal{E}\left(\mathbb{F}_{q}\right)$ and $[m]_{*}(\omega)=x([m] P)$, or
- $\omega=x\left(P^{\prime}\right)$ for some $P^{\prime} \in \mathcal{E}^{\prime}\left(\mathbb{F}_{q}\right)$ and $[m]_{*}(\omega)=x\left([m] P^{\prime}\right)$.

Conclusion:

$$
\begin{aligned}
{[a]_{*} } & : \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \text { and }[b]_{*}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \\
& \text { commute for all } a, b \text { in } \mathbb{Z} .
\end{aligned}
$$

$$
\text { If } \omega=x(P) \text {, then }[m]_{*}(\omega)=x([m] P)
$$

Given $\omega,[a]_{*}(\omega),[b]_{*}(\omega)$, find $[a b]_{*}(\omega)$ (pseudo-CDHP):

- lift to $\mathcal{E}\left(\mathbb{F}_{q}\right)$ if $\omega=x(P)$ for some P in $\mathcal{E}\left(\mathbb{F}_{q}\right)$
- lift to $\mathcal{E}^{\prime}\left(\mathbb{F}_{q}\right)$ if $\omega=x\left(P^{\prime}\right)$ for some P^{\prime} in $\mathcal{E}^{\prime}\left(\mathbb{F}_{q}\right)$. Hence, both $\mathcal{E}\left(\mathbb{F}_{q}\right)$ and $\mathcal{E}^{\prime}\left(\mathbb{F}_{q}\right)$ must be secure.

State-of-the-Art Diffie-Hellman

- $\mathcal{G}=\mathbb{F}_{q}$ (not viewed as a group!)
- secret $[a]_{*},[b]_{*}$ from random a, b in $O(q)$ and twist-secure $\mathcal{E}: B y^{2}=x\left(x^{2}+A x+1\right)$ over \mathbb{F}_{q}
- Example: Bernstein's Curve25519 software.

The challenge: Go faster.

Endomorphisms

Suppose $\mathcal{E} / \mathbb{F}_{q}$ is an elliptic curve, \mathcal{E}^{\prime} its quadratic twist.
Endomorphisms: algebraic maps $\phi: \mathcal{E} \rightarrow \mathcal{E}$ such that $\phi(P \oplus Q)=\phi(P) \oplus \phi(Q)$ for all P, Q in \mathcal{E}.
Examples: [m] for m in \mathbb{Z}, Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$.

$$
\begin{aligned}
& \text { General form: } \phi:(x, y) \mapsto\left(\phi_{*}(x), y \cdot \mu \frac{d \phi_{*}}{d x}(x)\right) \\
& \text { for some } \phi_{*} \text { in } \mathbb{F}_{q}(x), \mu \text { in } \mathbb{F}_{q} \text {. }
\end{aligned}
$$

- The endomorphisms form a (quadratic imaginary) ring, $\operatorname{End}(\mathcal{E})$
- $\mathbb{Z}[\pi] \subseteq \operatorname{End}(\mathcal{E})$
- $\operatorname{End}(\mathcal{E}) \cong \operatorname{End}\left(\mathcal{E}^{\prime}\right)$
- If $\phi \in \operatorname{End}(\mathcal{E})$, then the corresponding $\phi^{\prime} \in \operatorname{End}\left(\mathcal{E}^{\prime}\right)$ satisfies $\phi_{*}=\phi_{*}^{\prime}$

Suppose $\phi \in \operatorname{End}(\mathcal{E})$ is efficient and defined $/ \mathbb{F}_{q}$ ("efficient" $=$ compute $P \mapsto \phi(P)$ in $O(1) \mathbb{F}_{q}$-operations)

Suppose $\mathcal{G} \cong \mathbb{Z} / N \mathbb{Z}$ and $\mathcal{G}^{\prime} \cong \mathbb{Z} / N^{\prime} \mathbb{Z}$

 are large subgroups of $\mathcal{E}\left(\mathbb{F}_{q}\right)$ and $\mathcal{E}^{\prime}\left(\mathbb{F}_{q}\right)$, respectively.$$
\Longrightarrow \phi(\mathcal{G}) \subseteq \mathcal{G} \text { and } \phi^{\prime}(\mathcal{G}) \subseteq \mathcal{G}^{\prime}
$$

$\Longrightarrow \begin{cases}\phi(P)=[\lambda] P \forall P \in \mathcal{G} & \text { for some } \lambda \bmod N \\ \phi^{\prime}\left(P^{\prime}\right)=\left[\lambda^{\prime}\right] P^{\prime} \forall P^{\prime} \in \mathcal{G}^{\prime} & \text { for some } \lambda^{\prime} \bmod N^{\prime}\end{cases}$
$\Longrightarrow \phi_{*}(\omega)=\phi_{*}^{\prime}(\omega)= \begin{cases}{[\lambda]_{*}(\omega)} & \text { if } \omega \in x\left(\mathcal{E}\left(\mathbb{F}_{q}\right)\right) \\ {\left[\lambda^{\prime}\right]_{*}(\omega)} & \text { if } \omega \in x\left(\mathcal{E}^{\prime}\left(\mathbb{F}_{q}\right)\right)\end{cases}$

Scalar decompositions on \mathcal{E}

Suppose ϕ has eigenvalue λ on $\mathcal{G} \subseteq \mathcal{E}\left(\mathbb{F}_{q}\right)$.
To compute $[m] P$ for P in \mathcal{G} :

- Compute m_{0} and m_{1} st $m \equiv m_{0}+m_{1} \lambda(\bmod N)$ [easy]
- Compute $[m] P=\left[m_{0}\right] P \oplus\left[m_{1}\right] \phi(P)$ using (simultaneous) multiexponentiation: chain length $\sim \max \left(\log _{2}\left|m_{i}\right|\right)$.
- If $|\lambda| \geq \sqrt{N}$, then $\max \left(\log _{2}\left|m_{i}\right|\right)=\frac{1}{2} \log _{2} N+\epsilon$.

Converse: sample $\left(m_{0}, m_{1}\right)$ from $O(\sqrt{N})^{2}$, $\Longrightarrow\left[m_{0}\right] P \oplus\left[m_{1}\right] \phi(P) \approx$ random element of \mathcal{G}

Efficient ϕ ? $\operatorname{deg} \phi=\operatorname{deg}_{\text {sep }} \phi \cdot \operatorname{deg}_{\text {insep }} \phi$.

- deg $_{\text {insep }} \longleftrightarrow$ contribution of p-th powering (virtually free)
- deg sep \longleftrightarrow complexity of defining polynomials \longleftrightarrow efficiency

Scalar decompositions on the x-line

We want to compute $x\left(\left[m_{0}\right] P \oplus\left[m_{1}\right] \phi(P)\right)$ from $x(P)$.
2-dim. differential addition chains: can compute $x\left(\left[m_{0}\right] P \oplus\left[m_{1}\right] Q\right)$ from $x(P), x(Q), x(P \ominus Q)$

So: we need $x(P), x(\phi(P)), x(P \ominus \phi(P))$
Naïve: start with $P \in \mathcal{E}\left(\mathbb{F}_{q}\right)$; compute $\phi(P)$ and $P \ominus \phi(P)$; then launch chain on x-coords.

Better: $1-\phi$ is an endomorphism; compute $(1-\phi)_{*}$.

$$
\text { Use } x(P \ominus \phi(P))=(1-\phi)_{*}(x(P))
$$

D-H with x-line endomorphisms

Public parameters: $\omega \in \mathbb{F}_{q}$, twist-secure $\mathcal{E} / \mathbb{F}_{q}$ with efficient ϕ
(1) Aubry randomly samples $a \subset O(q) a_{0}, a_{1} \in O(\sqrt{q})$;
computes \& publishes $A=[a]_{*}(\omega) A=\left(\left[a_{0}\right] \oplus\left[a_{1}\right] \phi\right)_{*}(\omega)$ using differential addition chain on $\omega, \phi_{*}(\omega),(1-\phi)_{*}(\omega)$
(2) Ballet randomly samples $b \in O(q) b_{0}, b_{1} \in O(\sqrt{q})$; computes \& publishes $B=[b]_{*}(\omega) B=\left(\left[b_{0}\right] \oplus\left[b_{1}\right] \phi\right)_{*}(\omega)$ using differential addition chain on $\omega, \phi_{*}(\omega),(1-\phi)_{*}(\omega)$

- Aubry computes secret $K=[a]_{*}(B) K=\left(\left[a_{0}\right] \oplus\left[a_{1}\right] \phi\right)_{*}(B)$ using differential addition chain on $B, \phi_{*}(B),(1-\phi)_{*}(B)$
- Ballet computes secret $K=[b]_{*}(A) K=\left(\left[b_{0}\right] \oplus\left[b_{1}\right] \phi\right)_{*}(A)$ using differential addition chain on $A, \phi_{*}(A),(1-\phi)_{*}(A)$

GLV (Gallant-Lambert-Vanstone, CRYPTO 2001)

Fast endomorphisms from CM curves with tiny CM discriminants.
Fast because $\operatorname{deg}_{\text {sep }}(\phi)=$ tiny and $\operatorname{deg}_{\text {insep }}(\phi)=1$. Example:

$$
\begin{gathered}
\mathcal{E}: y^{2}=x\left(x^{2}+1\right) \\
\phi:(x, y) \longmapsto(-x, \sqrt{-1} y) .
\end{gathered}
$$

Applying GLV endomorphisms to the x-line:

$$
\begin{aligned}
\phi_{*} & : x & {[\text { fast }] } \\
(1-\phi)_{*}: x & \longmapsto \frac{\sqrt{-1}}{2}(x+1 / x) & {[f a s t] }
\end{aligned}
$$

Disadvantage (major): GLV curves are impossibly rare \Longrightarrow generally no secure curves $/ \mathbb{F}_{p}$ for efficient p.

GLS (Galbraith-Lin-Scott, EUROCRYPT 2009)

Fast endomorphisms from twists of subfield curves over $\mathbb{F}_{p^{2}}$: the fast endomorphism is a twisted sub-Frobenius.

Example: take any A_{0} in $\mathbb{F}_{p}, p \equiv 3(\bmod 4)$

$$
\begin{gathered}
\mathcal{E}: y^{2}=x\left(x^{2}+A_{0} \sqrt{-1} x+1\right) \\
\phi:(x, y) \mapsto\left(-x^{p}, i y^{p}\right)
\end{gathered}
$$

- Fast because $\operatorname{deg}_{\text {sep }}(\phi)=1$, and $\operatorname{deg}_{\text {sep }}(\phi)=p$
- Advantage: $O(p)$ GLS curves over any $\mathbb{F}_{p^{2}}$: \Longrightarrow can find secure curves over fast $\mathbb{F}_{p^{2}}$
- Disadvantage: GLS curves are catastrophically twist-insecure by construction (their twists are subfield curves)
\Longrightarrow unsuitable for Diffie-Hellman

\mathbb{Q}-curve reductions (S., ASIACRYPT 2013)

Reduce low degree \mathbb{Q}-curve families modulo inert primes p to get $\mathcal{E}, \phi / \mathbb{F}_{p^{2}}$ with $\operatorname{deg}_{\text {sep }}(\phi)=$ tiny, $\operatorname{deg}_{\text {insep }}(\phi)=p$.
Example: Take any $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\sqrt{\Delta})$. For every $t \in \mathbb{F}_{p}$, the curve

$$
\mathcal{E}_{t} / \mathbb{F}_{p^{2}}: y^{2}=x^{3}-6(5-3 t \sqrt{\Delta}) x+8(7-9 t \sqrt{\Delta})
$$

has an efficient (faster than doubling) endomorphism
$\phi:(x, y) \longmapsto\left(f\left(x^{p}\right), \frac{y^{p}}{\sqrt{-2}} f^{\prime}\left(x^{p}\right)\right)$ where $f\left(x^{p}\right)=\frac{-x^{p}}{2}-\frac{9(1-t \sqrt{\Delta})}{\left(x^{p}-4\right)}$.
We have $\phi^{2}=[\pm 2] \pi$, so $\lambda_{\phi}= \pm \sqrt{ \pm 2}$ on cryptographic subgroups.
On the x-line: $\phi_{*}(x)=f\left(x^{p}\right)$ is fast, but
$(1-\phi)_{*}(x)=$ quartic beurk with a $(p+1) / 2$-powering in $\mathbb{F}_{p^{2}}$.

Implementation: Costello-Hisil-S. (EUROCRYPT 2014)

C/Assembly implementation targeting 128-bit security level Platform: Intel Ivy Bridge
Based on \mathbb{Q}-curve reduction over $\mathbb{F}_{p^{2}}$ with $p=2^{127}-1$
For comparison, without endomorphisms:
Montgomery ladder (uniform, const. time) same curve: 159 kCycles Curve25519 (uniform, const. time), 182 kCycles

Chain	unif.	const. time	steps 		128	per step		kCycles
	NO	NO	~ 0.9	~ 1.6	~ 0.6	109		
A-K	YES	NO	~ 1.4	1	1	133		
Bernstein	YES	YES	1	2	1	148		

Next challenge: Go faster, cleaner

