
Compact Diffie-Hellman key exchange
with efficient endomorphisms

Benjamin Smith

Team GRACE

INRIA Saclay–̂Ile-de-France

Laboratoire d’Informatique de l’École polytechnique (LIX)
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Conventions

For the next hour,

q is a power of a prime p > 3

Everything is defined over Fq

(unless otherwise noted)

All abelian varieties are ordinary
(not supersingular)
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Diffie–Hellman key exchange Elementary Diffie–Hellman

Diffie–Hellman Key Exchange

Smith (INRIA/LIX) Compact DH with endomorphisms YACC, 12/06/2014 3 / 23



Diffie–Hellman key exchange Classic Diffie–Hellman

Original scheme: G ⊂ F×q
Compute P 7→ [m]P := Pm via chain of squares & mults

To break CDHP (P , [a]P , [b]P) 7→ [ab]P :
subexponential solution using index calculus
Recent developments =⇒ q must be prime

q prime: solve CHDP with Number Field Sieve variant

=⇒ key sizes and computational costs scale like RSA

128-bit security (≡ basic AES): need 3000-bit q

=⇒ F×q is slow and inefficient
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Diffie–Hellman key exchange ECDH: Elliptic Curve Diffie–Hellman

Elliptic curves: By 2 = x(x2 + Ax + 1).

Compute P 7→ [m]P via chain of doubles & adds

x(P ⊕ Q) := BF⊕(P,Q)2 − (x(P) + x(Q) + A)

y(P ⊕ Q) := (2x(P) + x(Q) + A)F⊕(P,Q)− BF⊕(P,Q)3 − y(P)

where F⊕(P,Q) := (y(Q)− y(P))/(x(Q)− x(P)) ,while

x([2]P) := BF2(P)2 − (2x(P) + A)

y([2]P) := (3x(P) + A)F2(P)− BF2(P)3 − y(P)

where F2(P) := (3x(P)2 + 2Ax(P) + 1)/(2By(P)) .

Exponential CDHP (Pollard ρ) =⇒ shorter keys & chains

eg. 128-bit security (' AES): 256-bit q (vs 3k-bit for Gm)
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Diffie–Hellman key exchange Observations

Look again:

Focus: scalar multiplication P 7→ [m]P ,
not group law ⊕.

In fact: we don’t care if G is not a group!
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Diffie–Hellman key exchange Abstract Diffie–Hellman

Modern Diffie–Hellman

G is a large set (with no proper group operation!)

[a], [b] ∈ large set of easy commuting maps G → G
with a hard CHDP (given P , [a]P , [b]P , find [ab]P)
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Elliptic Curves Montgomery models

Montgomery’s observation

If P and Q are points on E : By 2 = x(x2 + Ax + 1), then

x(P ⊕ Q)x(P 	 Q) =
(x(P)x(Q)− 1)2

(x(P)− x(Q))2

and x([2]P) =
(x(P)− 1)2

4x(P)(x(P)2 + Ax(P) + 1)
.

Notice: B and y are gone!

Use differential addition chains, where
P ⊕ Q only appears if P 	 Q appeared previously

=⇒ compute [m]∗ : x(P) 7→ x([m]P) using only x-coord
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Elliptic Curves Montgomery models

Montgomery arithmetic

[m]∗ : x =: X1/Z1 7−→ Xm/Zm for any m ∈ Z

where we compute (Xm : Zm) using a differential chain based on

Pseudo-addition (6M + 4A) where r 6= s:

Xr+s = Zr−s [(Xr − Zr )(Xs + Zs) + (Xr + Zr )(Zs − Zs)]2

Zr+s = Xr−s [(Xr − Zr )(Xs + Zs)− (Xr + Zr )(Zs − Zs)]2

Pseudo-doubling (5M + 4A):

X2r = (Xr + Zr )
2(Xr − Zr )

2

Z2r = (4XrZr )
[
(Xr − Zr )

2 + A+2
4
· (4XrZr )

]
where 4XrZr = (Xr + Zr )

2 − (Xr − Zr )
2.

If ω = x(P) for P in E(Fq), then [m]∗(ω) = x([m]P).
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Elliptic Curves Montgomery models

Quadratic twist of E : By 2 = x(x2 + Ax + 1):
any E ′ : B ′y 2 = x(x2 + Ax + 1) where B ′/B is not a square in Fq.

The maps [m]∗ depend on A but not B (or B ′)
=⇒ [m]∗ is identical for E and E ′.

For every ω ∈ Fq, either

ω = x(P) for some P ∈ E(Fq) and [m]∗(ω) = x([m]P), or

ω = x(P ′) for some P ′ ∈ E ′(Fq) and [m]∗(ω) = x([m]P ′).

Conclusion:
[a]∗ : Fq → Fq and [b]∗ : Fq → Fq

commute for all a, b in Z.
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Elliptic Curves Twist-security

If ω = x(P), then [m]∗(ω) = x([m]P).

Given ω, [a]∗(ω), [b]∗(ω), find [ab]∗(ω) (pseudo-CDHP):

lift to E(Fq) if ω = x(P) for some P in E(Fq)

lift to E ′(Fq) if ω = x(P ′) for some P ′ in E ′(Fq).

Hence, both E(Fq) and E ′(Fq) must be secure.
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Elliptic Curves Contemporary Diffie–Hellman

State-of-the-Art Diffie–Hellman

G = Fq (not viewed as a group!)

secret [a]∗, [b]∗ from random a, b in O(q)
and twist-secure E : By 2 = x(x2 + Ax + 1) over Fq

Example: Bernstein’s Curve25519 software.
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The challenge Beyond the state of the art

The challenge:
Go faster.
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Endomorphisms Endomorphisms of elliptic curves

Endomorphisms

Suppose E/Fq is an elliptic curve, E ′ its quadratic twist.

Endomorphisms: algebraic maps φ : E → E such that
φ(P ⊕ Q) = φ(P)⊕ φ(Q) for all P ,Q in E .

Examples: [m] for m in Z, Frobenius π : (x , y) 7→ (xq, yq).

General form: φ : (x , y) 7→ (φ∗(x), y · µdφ∗
dx

(x))
for some φ∗ in Fq(x), µ in Fq.

The endomorphisms form a (quadratic imaginary) ring, End(E)

Z[π] ⊆ End(E)

End(E) ∼= End(E ′)
If φ ∈ End(E), then the corresponding φ′ ∈ End(E ′) satisfies φ∗ = φ′∗
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Endomorphisms Endomorphisms and eigenvalues

Suppose φ ∈ End(E) is efficient and defined /Fq

(“efficient” = compute P 7→ φ(P) in O(1) Fq-operations)

Suppose G ∼= Z/NZ and G ′ ∼= Z/N ′Z
are large subgroups of E(Fq) and E ′(Fq), respectively.

=⇒ φ(G) ⊆ G and φ′(G) ⊆ G ′

=⇒

{
φ(P) = [λ]P ∀P ∈ G for some λ mod N

φ′(P ′) = [λ′]P ′ ∀P ′ ∈ G ′ for some λ′ mod N ′

=⇒ φ∗(ω) = φ′∗(ω) =

{
[λ]∗(ω) if ω ∈ x(E(Fq))

[λ′]∗(ω) if ω ∈ x(E ′(Fq))
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Endomorphisms Scalar decomposition

Scalar decompositions on E
Suppose φ has eigenvalue λ on G ⊆ E(Fq).

To compute [m]P for P in G:

Compute m0 and m1 st m ≡ m0 + m1λ (mod N) [easy]

Compute [m]P = [m0]P ⊕ [m1]φ(P) using (simultaneous)
multiexponentiation: chain length ∼ max(log2 |mi |).

If |λ| ≥
√

N , then max(log2 |mi |) = 1
2

log2 N + ε.

Converse: sample (m0,m1) from O(
√

N)2,
=⇒ [m0]P ⊕ [m1]φ(P) ≈ random element of G

Efficient φ? deg φ = degsep φ · deginsep φ.

deginsep ←→ contribution of p-th powering (virtually free)

degsep ←→ complexity of defining polynomials ←→ efficiency
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Endomorphisms Scalar decomposition

Scalar decompositions on the x-line

We want to compute x([m0]P ⊕ [m1]φ(P)) from x(P).

2-dim. differential addition chains: can compute
x([m0]P ⊕ [m1]Q) from x(P), x(Q), x(P 	 Q)

So: we need x(P), x(φ(P)), x(P 	 φ(P))

Näıve: start with P ∈ E(Fq); compute φ(P)
and P 	 φ(P); then launch chain on x-coords.

Better: 1− φ is an endomorphism; compute (1− φ)∗.
Use x(P 	 φ(P)) = (1− φ)∗(x(P)).
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Endomorphisms Scalar decomposition

D–H with x-line endomorphisms

Public parameters: ω ∈ Fq, twist-secure E/Fq with efficient φ
1 Aubry randomly samples a ∈ O(q) a0, a1 ∈ O(

√
q);

computes & publishes A = [a]∗(ω) A = ([a0]⊕ [a1]φ)∗(ω)
using differential addition chain on ω, φ∗(ω), (1− φ)∗(ω)

2 Ballet randomly samples b ∈ O(q) b0, b1 ∈ O(
√

q);
computes & publishes B = [b]∗(ω) B = ([b0]⊕ [b1]φ)∗(ω)
using differential addition chain on ω, φ∗(ω), (1− φ)∗(ω)

3 Aubry computes secret K = [a]∗(B) K = ([a0]⊕ [a1]φ)∗(B)
using differential addition chain on B , φ∗(B), (1− φ)∗(B)

4 Ballet computes secret K = [b]∗(A) K = ([b0]⊕ [b1]φ)∗(A)
using differential addition chain on A, φ∗(A), (1− φ)∗(A)
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Endomorphisms Gallant–Lambert–Vanstone multiplication

GLV (Gallant–Lambert–Vanstone, CRYPTO 2001)

Fast endomorphisms from CM curves with tiny CM discriminants.

Fast because degsep(φ) = tiny and deginsep(φ) = 1. Example:

E : y 2 = x(x2 + 1)

φ : (x , y) 7−→ (−x ,
√
−1y).

Applying GLV endomorphisms to the x-line:

φ∗ : x 7−→ −x [fast]

(1− φ)∗ : x 7−→
√
−1
2 (x + 1/x) [fast]

Disadvantage (major): GLV curves are impossibly rare
=⇒ generally no secure curves /Fp for efficient p.
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Endomorphisms Galbraith–Lin–Scott multiplication

GLS (Galbraith–Lin–Scott, EUROCRYPT 2009)

Fast endomorphisms from twists of subfield curves over Fp2 :
the fast endomorphism is a twisted sub-Frobenius.

Example: take any A0 in Fp, p ≡ 3 (mod 4)

E : y 2 = x(x2 + A0

√
−1x + 1)

φ : (x , y) 7→ (−xp, iy p)

Fast because degsep(φ) = 1, and degsep(φ) = p

Advantage: O(p) GLS curves over any Fp2 :
=⇒ can find secure curves over fast Fp2

Disadvantage: GLS curves are catastrophically twist-insecure
by construction (their twists are subfield curves)
=⇒ unsuitable for Diffie–Hellman
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Endomorphisms Q-curve techniques

Q-curve reductions (S., ASIACRYPT 2013)

Reduce low degree Q-curve families modulo inert primes p
to get E , φ/Fp2 with degsep(φ) = tiny, deginsep(φ) = p.

Example: Take any Fp2 = Fp(
√

∆). For every t ∈ Fp, the curve

Et/Fp2 : y2 = x3 − 6(5− 3t
√

∆)x + 8(7− 9t
√

∆)

has an efficient (faster than doubling) endomorphism

φ : (x , y) 7−→
(
f (xp),

yp√
−2

f ′(xp)

)
where f (xp) =

−xp

2
− 9(1− t

√
∆)

(xp − 4)
.

We have φ2 = [±2]π, so λφ = ±
√
±2 on cryptographic subgroups.

On the x-line: φ∗(x) = f (xp) is fast, but
(1− φ)∗(x) = quartic beurk with a (p + 1)/2-powering in Fp2 .
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Endomorphisms Costello–Hisil–S. implementation

Implementation: Costello–Hisil–S. (EUROCRYPT 2014)

C/Assembly implementation targeting 128-bit security level

Platform: Intel Ivy Bridge

Based on Q-curve reduction over Fp2 with p = 2127 − 1

For comparison, without endomorphisms:
Montgomery ladder (uniform, const. time) same curve: 159 kCycles

Curve25519 (uniform, const. time), 182 kCycles

Chain unif.
const. steps per step

kCycles
time /128 ⊕ [2]

PRAC NO NO ∼ 0.9 ∼ 1.6 ∼ 0.6 109
A-K YES NO ∼ 1.4 1 1 133

Bernstein YES YES 1 2 1 148

Smith (INRIA/LIX) Compact DH with endomorphisms YACC, 12/06/2014 22 / 23



Endomorphisms Costello–Hisil–S. implementation

Next challenge:
Go faster, cleaner
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