Asymptotic nonlinearity of Boolean functions

François Rodier

Institut de Mathématiques de Luminy
Marseille

Outline

(1) Boolean functions
(2) Higher order nonlinearity of Boolean functions
(3) Nonlinearity of Vectorial Boolean functions

4 Resistance against linear cryptanalysis
(5) Conclusion

Boolean functions

- Let m be a positive integer and $q=2^{m}$.
- A Boolean function with m variables is a map from the space $V_{m}=\mathbb{F}_{2}^{m}$ into \mathbb{F}_{2}.
- A Boolean function is linear if it is a linear form on the vector space \mathbb{F}_{2}^{m}.
- It is affine if it is equal to a linear function up to a constant.

Cryptanalysis

- Booleaan functions are used to build cryptosystems, block ciphers or stream ciphers.
- The existence of affine approximations of the Boolean functions involved in a cryptosystem allows in various situations to build attacks on this system.
- It consists in simplifying the enciphering algorithm by a linear approximation.
- Therefore a function f is the more resistant to this attack that f is distinct from a linear mapping.

Non-linearity

We call non-linearity of a Boolean function $f: V_{m} \longrightarrow \mathbb{F}_{2}$ the distance from f to the set of affine functions with m variables:

$$
n l(f)=\min _{h \text { affine }} d(f, h)
$$

where d is the Hamming distance.

The non-linearity is equal to $\quad n l(f)=2^{m-1}-\frac{1}{2} S(f)$
where

$$
S(f)=\sup _{v \in V_{m}}\left|\sum_{x \in V_{m}}(-1)^{(f(x)+v \cdot x)}\right|
$$

and $v \cdot x$ denote the usual scalar product in V_{m}.
$S(f)$ is the spectral amplitude of the Boolean function f.

Inequalities on the nonlinearity

$$
\begin{array}{ccc}
2^{m / 2} \quad 2^{m}-2 n l(f)=S(f)=\sup _{v \in v_{m}}\left|\sum_{x \in V_{m}}(-1)^{(f(x)+v \cdot x)}\right| & \leq 2^{m} \\
& \uparrow \\
& \uparrow \\
\text { Parseval } & \text { clear }
\end{array}
$$

For an even dimension m : bent functions reach the lower bound $2^{m / 2}$.
For odd m : $\quad 2^{m / 2} \sqrt{2}$ has been a long time the only known lower bound of the spectral amplitude $S(f)$.

Improvements of the bound by Patterson and Wiedemann and more recently, by Kavut, Maitra and Yücel have led to a conjecture:

$$
\inf _{f} S(f) \sim 2^{m / 2}
$$

Boolean functions in cryptography

For security reasons functions need to have properties like

- high nonlinearity
- balancedness
- high algebraic degree,
- High algebraic immunity,
- ...

It is necessary to have the possibility of choosing among many Boolean functions,

- not only bent functions,
- but also functions which are close to be bent,

Distribution of the nonlinearity for $m=10$

Distribution of the nonlinearity for $m=15$

Nonlinearity

Distribution of the nonlinearity of the Boolean functions

Theorem (Olejar, Stanek, Carlet, FR)

The probability that

$$
a \sqrt{2 q \log q}<q-2 n l(f)=S(f)<b \sqrt{2 q \log q}
$$

tends to 1 as m goes to infinity for $0<a<1<b$.
If f is a Boolean function, then, almost surely:

$$
\lim _{m \rightarrow \infty} \frac{S(f)}{\sqrt{2 q \log q}}=1
$$

Cryptanalysis of order r

- The cryptanalysis of order r consists in simplify the enciphering algorithm by making an approximation by the set of all functions whose algebraic degrees do not exceed r.
- Therefore a function f is the more resistant to that this attack that f is distinct from a mapping of order r.
- The nonlinearity of order r generalizes the usual nonlinearity. For a given function f, it is its Hamming distance to the set of all r-order functions
- Let $N L_{r}(f)$ denote the r-th order nonlinearity of f, we have

$$
N L_{r}(f)=\min _{g \in \operatorname{RM}(r, n)} d_{H}(f, g)
$$

Higher order nonlinearity of Boolean functions

Very little is known on $n I_{r}(f)$ for $r>1$.
To be able to compare with the preceding theorem, we define the spectral amplitude of a Boolean function f the integer $S_{r}(f)$ such that

$$
n l_{r}(f)=2^{m-1}-\frac{1}{2} S_{r}(f)
$$

Theorem (C. Carlet and S. Mesnager)

The minimum possible spectral amplitude of order r of Boolean functions, is bounded from below by $\sqrt{15}(1+\sqrt{2})^{r-2} \times 2^{m / 2+1}+O\left(m^{r-2}\right)$.

Higher order nonlinearity of Boolean functions

Asymptotically, C. Carlet proved that almost all Boolean functions have high r-th order nonlinearities, or low r-th order spectral amplitude.
S. Dib, K-U. Schmidt proved that this was the exact bound.

Theorem (C. Carlet, S. Dib, K-U. Schmidt)

The density of the set of functions satisfying

$$
a 2^{\frac{m+1}{2}} \sqrt{\binom{m}{r} \log 2}<2^{m}-2 n l_{r}(f)=S_{r}(f)<b 2^{\frac{m+1}{2}} \sqrt{\binom{m}{r} \log 2}
$$

tends to 1 when m tends to infinity, if $0<a<1<b$.
If f is a Boolean function, then, almost surely:

$$
\lim _{m \rightarrow \infty} \frac{S(f)}{2^{\frac{m+1}{2}} \sqrt{\binom{m}{r} \log 2}}=1
$$

Vectorial Boolean functions - S-boxes

The linear cryptanalysis exploits nonuniform statistical behaviors in the process of encryption.

It consists in simplifying the encryption algorithm by making a linear approximation.

Therefore a function F is the more resistant to that this attack that F is distinct from a linear mapping.

Vectorial Boolean functions - S-boxes

A (m, n) vectorial Boolean function with m variables is a map from the space $V_{m}=\mathbb{F}_{2}^{m}$ into $V_{n}=\mathbb{F}_{2}^{n}$.

I define the component functions $u \cdot f$ as the functions
$x \longmapsto(u \cdot f)(x)=u \cdot f(x)$ where \cdot denote the usual scalar product of two elements of V_{n}.

Non-linearity
We call non-linearity of a vectorial Boolean function $f: V_{m} \longrightarrow V_{n}$
the minimum Hamming distance between all the component functions of f and all affine functions on m variables:

$$
n l(f)=\min _{u \in V_{n}^{*}} \min _{h \text { affine }} d(u \cdot f, h)
$$

where d is the Hamming distance.
The non-linearity is equal to $\quad n l(f)=2^{m-1}-\frac{1}{2} S(f)$
where $S(f)=\sup _{u \in V_{n}^{*}} \sup _{v \in V_{m}}\left|\sum_{x \in V_{m}}(-1)^{(u \cdot f(x)+v \cdot x)}\right|$

Vectorial Boolean functions - S-boxes

Results by Nyberg

Theorem (Nyberg)

The minimal spectral amplitude of a vectorial function $f: \mathbb{F}_{2^{m}} \longrightarrow \mathbb{F}_{2^{n}}$ such that $n \leq m-1$ is such that

$$
S(f) \geq 2^{m / 2}
$$

This bound can be achieved with equality only if m is even and $n \leq m / 2$ by the so-called bent functions.

Results by Chabaud-Vaudenay

Theorem (Chabaud-Vaudenay)

The minimal spectral amplitude of a vectorial function $\mathbb{F}_{2^{m}} \longrightarrow \mathbb{F}_{2^{m}}$ is $2^{\frac{m+1}{2}}$.
The functions reaching this bound are called almost bent. They exists when m is odd.

Vectorial Boolean functions - S-boxes

Theorem (S. Dib)

If f is a vectorial function $\mathbb{F}_{q} \longrightarrow \mathbb{F}_{q}$, then, almost surely: the probability that

$$
2 a \sqrt{q \log q}<q-2 n l(f)=S(f)<2 b \sqrt{q \log q}
$$

tends to 1 as m goes to infinity for $0<a<1<b$.
If f is a vectorial function $\mathbb{F}_{q} \longrightarrow \mathbb{F}_{q}$, then, a.s.:

$$
\lim _{m \rightarrow \infty} \frac{S(f)}{2 \sqrt{q \log q}}=1
$$

Vectorial Boolean functions - S-boxes

Theorem (S. Dib)
If f is a vectorial function $\mathbb{F}_{2}^{m} \longrightarrow \mathbb{F}_{2}^{n}$, then, almost surely: the probability that

$$
S(f)<b \sqrt{2^{m+1}(m+n) \log 2}
$$

tends to 1 as m goes to infinity for $1<b$.

Theorem (S. Dib)

If f is a vectorial function $\mathbb{F}_{2}^{m} \longrightarrow \mathbb{F}_{2}^{n}$, and $m \geq n$ then, almost surely: the probability that

$$
a \sqrt{2^{m+1}(m+n) \log 2}<S(f)
$$

tends to 1 as m goes to infinity for $0<a<1$.

Resistance against linear cryptanalysis

Let an r round cipher with

- $X \in \mathbb{F}_{2}^{m}$, the plain text,
- $K \in \mathbb{F}_{2}^{\ell}$ the key
- $Y(X, K) \in \mathbb{F}_{2}^{m}$ a function of X and K.
where all are random variables.

$$
x_{1} \xrightarrow{F_{K_{1}}} x_{2} \xrightarrow{F_{K_{2}}} \ldots \xrightarrow{F_{K_{r-2}}} x_{r-1} \xrightarrow{F_{K_{r-1}}} Y(X, K)
$$

Let $a \in \mathbb{F}_{2}^{m}, b \in \mathbb{F}_{2}^{m}$ be linear masks.

$$
a \cdot X=b \cdot Y(X, K) ?
$$

Theorem (Nyberg)

In a DES-like cipher with more than 4 rounds, independent round keys and uniformly random plaintext and f be the S-box.

$$
2^{-\ell} \sum_{K \in \mathbb{F}_{2}^{\ell}}\left(P_{X}(a \cdot X=b \cdot Y(X, K))-\frac{1}{2}\right)^{2} \leq 2^{-4 m-1} S(f)^{4}
$$

Example

$$
2^{-\ell} \sum_{K \in \mathbb{F}_{2}^{\ell}}\left(P_{X}(a \cdot X=b \cdot Y(X, K))-\frac{1}{2}\right)^{2} \leq 2^{-4 m-1} S(f)^{4}
$$

- Let we consider 2 ciphers
- Let a cipher on \mathbb{F}_{2}^{m} with f be an almost bent function.
- Let a cipher on $\mathbb{F}_{2}^{m^{\prime}}$ with f^{\prime} a function $\mathbb{F}_{2}^{m^{\prime}} \longrightarrow \mathbb{F}_{2}^{m^{\prime}}$ such that $S\left(f^{\prime}\right) \simeq 2 \sqrt{2^{m^{\prime}} m^{\prime} \log 2}$.
- Then they give the same bound on probability of breaking the cipher if

$$
m=m^{\prime}-\log _{2}\left(m^{\prime}\right)-0.47
$$

- Let $m^{\prime}=136$ for random function, then $m=128$ for almost bent function.

Conclusion

- We have been interested in classifying the Boolean functions according to the nonlinearity.
- We found a concentration point for the nonlinearity of random functions in the case of
- Boolean functions with $r^{\text {th }}$ order nonlinearity
- Vectorial Boolean functions
- We found that it is close to the maximum nonlinearity in these cases
- You don't lose very much by replacing an almost bent function by a random function
- To be done to find bounds for $\sqrt{q} \leq S(f) \leq \sqrt{2 q \log q}$.

Thank you

