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In 1991, the U.S. government's National Institute of Standards and
Technology (NIST) proposed DSA (Digital Signature Algorithm).

For the construction of a such scheme the signer chooses:
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bits, size(p) = 1024,2048,3072 bits.
e ge{l,...,p—1} with ord,(g) = g.
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@ an one-way, collision-free hash function
h:{0,1}* — {0,...,q — 1}.
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Verification. The verification of the signed message (m, r,s) is
performed by checking

r= ((gsflh(m)moqusflrmodq) mod P) mod q.



A New Lattice Attack on DSA Schemes

ECDSA

In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standardized



A New Lattice Attack on DSA Schemes

ECDSA

In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standardized

For the construction of a such scheme the signer chooses



A New Lattice Attack on DSA Schemes

ECDSA

In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standardized

For the construction of a such scheme the signer chooses

@ an elliptic curve E over IFP,



A New Lattice Attack on DSA Schemes

ECDSA

In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standardized
For the construction of a such scheme the signer chooses

@ an elliptic curve E over IFP,
e a prime q with 2159 < ¢ < 2190 and q | |E(F})|,



A New Lattice Attack on DSA Schemes

ECDSA

In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standardized

For the construction of a such scheme the signer chooses

@ an elliptic curve E over IFP,
e a prime q with 2159 < ¢ < 2190 and q | |E(F})|,
o P e E(F,) with ord(P) = g,



A New Lattice Attack on DSA Schemes

ECDSA

In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standardized

For the construction of a such scheme the signer chooses
@ an elliptic curve E over IFP,
e a prime q with 2159 < ¢ < 2190 and q | |E(F})|,
o P e E(F,) with ord(P) = g,
@ ac{l,...,q— 1} and computes Q = aP,



A New Lattice Attack on DSA Schemes

ECDSA

In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standardized

For the construction of a such scheme the signer chooses

@ an elliptic curve E over IFP,

e a prime q with 2159 < ¢ < 2190 and q | |E(F})|,
o P e E(F,) with ord(P) = g,

@ ac{l,...,q— 1} and computes Q = aP,

°

an one-way and collision-free hash function
h:{0,1}* - {0,...,q —1}.
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Parameters: (p, E, P, q, h)
Public key: Q.

Private key: a.
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ECDSA

Verification. The verification of the signed message (m,r,s) is
performed by computing:

o u; = s 1h(m) mod g,

1

@ up =5s “rmod q,

o 1P+ wQ = (X0, ).

The signature is accepted if-if r = xp mod q.
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A New Lattice Attack on DSA Schemes

Security

The security of ECDSA is relied on the difficulty of computation of
the discrete logarithms a and k from the relations

Q = aP

and
kP = (x,¥).
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Security

Important Remark

In both cases a and k is a solution of the congruence

s = k71(h(m) + ar) mod gq.
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Lattices

Let B = {by,...,b,} be a basis of R".

A n-dimensional lattice spanned by B is the set

EZ{Zlbl—i----—i-ann/ 21,...,Zn€Z}.

The Euclidean norm of a vector v = (vi,..., v,) is the quantity

]| = (v + -+ v2)H2
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Closest Vector Problem (CVP)

Problem

Let £L C R" be a lattice and w € R" \ L. Find a vector v € L that
minimizes the quantity ||v — w||.

CVP is NP-hard problem.
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2010. D. Micciancio and P. Voulgaris

Theorem

Let £ be a n-dimensional lattice and'y € R". Then there is a
deterministic algorithm that computes v € L such that for every
t € £ we have

v—yl <llt—yl

in time 22n+o(n),




A New Lattice Attack on DSA Schemes

A System of Linear Congruences

Our attacks are based on the following result:

Theorem

Let g be an integer > 0. Consider integers n with 0 < n < log,q,
A; with
2i=1gi/(n+1) o p. < 2igi/(n+1)

and B; € {1,...,q — 1}. Then the system of congruences
yi+Aix+Bi=0(mod q) (i=1,...,n)

has at most one solution v = (x,y1,...,yn) € {0,...,q — 1}"*!
having
g/ ()

16

The time complexity of computation of x is O(22"+°(n),

vl <
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For the proof of this result we use the theorem of Micciancio and
P. Voulgaris, and the following lemma:

Lemma

Let q be an integer > 0. Consider integers n and A; such that

0 < n < logyq, and 2'—1q//("t1) < A; < 21¢//("*1) " We denote by
L the lattice spanned by the rows of the square matrix

-1 A1 A ... A,
0O g 0 ... O
J = 0 0 g ... O
0O 0o 0 ... g
Then for every nonzerov € L we have
qn/(n—I—l)
vl > —%—

8
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n < 2[log;, log, q].

mj messages and (rj, s;) theirs signatures with DSA (resp.
ECDSA) (j=1,...,t < n).

1 = (% mod p) mod g,
(resp. kiP = (xj, y;) and rj = x; mod q).

sj = kj_l(h(mj) + arj) mod q.
It follows that
ki+ Ca+Dj=0(modq) (j=1,...,t)

where G = —rJ-sj_1 mod q and D; = —sj_lh(mj) mod q.
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DSA-ATTACK-1

Input: (mj, rj,s;) G =1,...,1).
@ Compute G = —rjs; g mod g and Dj = —s; 1h(mj) mod gq.
@ Select integers A; (i =1,...,n) with

2i71qi/(n+1) <A< 2iqi/(n+1)
and denote by £ the lattice spanned by
(=1,Aq,...,An), (0,q9,0,...,0),..., (0,...,0,q).

(If 21=1g// (1) < C; < 27g"/("t1) e can take A; = C)).

@ Compute Bj = AiD;C; ' mod g (i=1,...,n, j=1,...,1t).
Denote by M the set of maps i : {1,...,n} — {1,...,t}. For
every 1 € M we set b, = (0, Byy(1), - - -, Brp(n))-

@ Using the algorithm of Theorem 1, Vi € M compute v, € £
s. t. Vt € £ we have |[v, — b, <[t —b,].

© For every u € M check if the first coordinate of v, is a.
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Proposition

Put ki = kqu"/(”H)jCj_l modqg(i=1,...,n, j=1,...,t).
Then the algorithm DSA-ATTACK-1 computes a provided that

1@ kapys - ki)l < 475D /4,

where . € M. The time complexity of the algorithm is
O((logy g)*+21°%2").
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We also have the congruences

kia '+ C+Dja =0 (mod q) (j=1,...,¢t).
Replacing (C;, D;) by (D;, C;) and a by a1, we obtain a variant of
DSA-ATTACK-1 called DSA-ATTACK-2.
Suppose t > 2. We eliminate a among the congruences

ki+ Ca+Dj=0(modq) (j=1,...,t).

Setting (N:J = —CJ-C,E_1 mod g, Dj = —Cth_le mod g, we get

ki+ Cike+D; =0 (mod q) (j=1,...,t—1).
Thus we have another attack called DSA-ATTACK-3.

Finally, we have the congruences
kiki*+ Ci+ Dik; =0 (mod q) (j=1,...,t—1)
which give another attack called DSA-ATTACK-4.
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y? =x3410x + C,
where

C = 1343632762150092499701637438970764818528075565078.



A New Lattice Attack on DSA Schemes

An Example

Let E be the elliptic curve defined over Fp,, where p = 2190 47 is a
prime, by the equation

y? =x3410x + C,
where

C = 1343632762150092499701637438970764818528075565078.

The number of points of E(IF,,) is the 160-bit prime

q = 1461501637330902918203683518218126812711137002561.
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Consider the point P = (x(P), y(P)) of E(F,), where
x(P) = 85871348105307027877916803292061368036004 7535271,

y(P) = 364938321350392265038182051503279726748224184066.

We take as private key the 160—bit integer

a = 874984668032211733311386841306673749333236586178.

The public key is Q = aP = (x(Q), y(Q)) where
x(Q) = 597162246892872056034315330452950636324741691536,

y(Q) = 1181877329208353060566969266758924757549684357390.
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Let m;, my and m3 be three messages with hash values

h(m1) = 1238458437157734227527825004718505271235024916418,
h(mp) = 1028653949698644928576637572550961266718086213222,
h(m3) = 1359253753908721564345086919389145449479510713328
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Let m;, my and m3 be three messages with hash values

h(m1) = 1238458437157734227527825004718505271235024916418,
h(mp) = 1028653949698644928576637572550961266718086213222,
h(m3) = 1359253753908721564345086919389145449479510713328.

N

The following ephemeral keys have been used respectively for the
generation of the signatures of the three messages:

ki = 466080543322889688835467115835518398826523750031,
ko 730750818665451459101842416358141509827966271589,
ks = 730750818665451459101842416358141509827966279681.

The size of ki is 158 bits and the size of k» and k3 is 159 bits.
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We have the points R; = kiP = (x(R;),y(Ri)) (i =1,2,3), where

= 1254157729089443995418123832523808277031313949462,
23109942117176529567525517253616649087109941040,
725144377910246885534616706756699404195507663231,
724834174614588160856240480005855379930897712013,
250593598147858114836913138265564915457464710851,
= 63119281333557571230379851501639067328261656282.

— N N —~ ~— —
I
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We have the points R; = kiP = (x(R;),y(Ri)) (i =1,2,3), where

x(R1) = 1254157729089443995418123832523808277031313949462,
y(R1) = 23109942117176529567525517253616649087109941040,
x(R2) = 725144377910246885534616706756699404195507663231,
y(R:) = 724834174614588160856240480005855379930897712013,
x(R3) = 250593598147858114836913138265564915457464710851,
y(R3) = 63119281333557571230379851501639067328261656282.

The signarure of m; is (r;,s;) where s; = k. '(h(m;) + ar;) mod q
and r; = x(R;) (i = 1,2,3). We have

s = 1363805341335356352807650823690154552653914451119,
) 1286644068312084224467989193436769265471767284571,
s3 = 1357235540051781293143720232752751840677247754090.
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First, we remark that
a~! mod g = 5070602400912917605986812821509 < 2103,
Thus, we shall apply DSA-ATTACK-2 with n = 3.
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First, we remark that
a~! mod g = 5070602400912917605986812821509 < 2103,
Thus, we shall apply DSA-ATTACK-2 with n = 3.

The couple (a~1mod g, k;a=! mod q) is a solution of the
congruence

y+Dix+ C =0 (mod q) (i=1,2,3),

where



A New Lattice Attack on DSA Schemes

First, we remark that

a~! mod g = 5070602400912917605986812821509 < 2103,

Thus, we shall apply DSA-ATTACK-2 with n = 3.

The couple (a~1mod g, k;a=! mod q) is a solution of the
congruence

where

G
Dy
G
D,
G
Ds

y+Dix+ C =0 (mod q) (i=1,2,3),

1461501463106331049611349884018124821212302099515,
34359738369,
856585227192969567381714973407499157966149117422,
1389773565760524781352174297091678638955836274432,
25289181258142448854230843836548288088082171610,
494393186466616365369065630169592100192862982492..
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We have
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qu/ﬂ = 1208925819614629174706175,

1g*/*] = 1320227995784915872903806163633513155.
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A New Lattice Attack on DSA Schemes

We have
qu/ﬂ = 1099511627775,
qu/ﬂ = 1208925819614629174706175,
Lq3/4J = 1329227995784915872903806163633513155.

We take A]_ = D]_, A2 = 281 + 1, A3 — 2122 + 23.
We have

271Gl < A < 2ig1* (i=1,2,3)



A New Lattice Attack on DSA Schemes

Since we have
h = aflkl mod g < 291,
h = kea *A;D;! mod q < 2%,

= ksa *A3D; ! mod g < 2%,

we obtain
(@™ mod q,h,h, k)| < q>/*/a.

Hence, the DSA-ATTACK-2 can provide us a—! mod g and so, the
secret key a.



A New Lattice Attack on DSA Schemes

THANK YOU



