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The Discrete Logarithm Problem (DLP)

Multiplicative group G generated by g :
solving the discrete logarithm problem in G ,
is inverting the map x 7→ gx

A hard problem in general, and used as such in cryptography
Two families of algorithms :

Generic algorithms (Pollard’s Rho, Pohlig-Hellman...)
Specific algorithms (Index Calculus)
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Index Calculus Algorithms

If we want to compute Discrete Logs in G :
Sieving Phase
→ Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base∏

gei
i =

∏
ge′

i
i ⇒

∑
ei log(gi ) = 0

→ So a lot of sparse linear equations

Linear Algebra Phase
→ Recover the Discrete Logs of the factor base
Individual Logarithm Phase
→ Recover the Discrete Logs of an arbitrary element
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Sieving Phase

How to obtain relations ?
For all x in E , we have : h1(g1(x)) = h2(g2(x)).

E

E1 E2

G

g1

g2

h1

h2
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Sieving Phase

How to obtain relations ?
For all x in E , we have : h1(g1(x)) = h2(g2(x)).

E

B1 ⊂ E1 E2 ⊃ B2

G

g1

g2

h1

h2

How to obtain "good" relations ? B1 and B2 two small sets.

Factor base = all the elements in G that can be written using
elements of B1 and B2 only.
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Structure
Commutative Diagram
Complexities

Number Field Sieve (NFS)

Solves the DLP for finite fields Fpn with medium to high
characteristic.

Belongs to the family of Index Calculus algorithms
⇒ 3 phases.
Preliminaries to the first phase :

Find two polynomials f1 and f2 with irreducible gcd
of degree n modulo p.
Define Fpn as the smallest field where the two polynomials
have a common root.
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Commutative Diagram

With m a root of these polynomials in Fpn :

Z [X ]

Q [X ] /(f1(X )) ≈ Q(θ1) Q(θ2) ≈ Q [X ] /(f2(X ))

Fpn

X 7→ θ1

X 7→ θ2

θ1 7→ m
θ2 7→ m

Factor base ? Bi := prime ideals (of the ring of integers) with a
norm smaller than a certain smoothness bound.
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Complexities

Notation : LQ(α, c) = exp
(
c(logQ)α(log logQ)1−α)

In FQ of characteristic p = LQ(lp, c) :

Co
m
pl
ex
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es
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Quasi-Polynomial FFS NFS

LQ
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)
LQ

(
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(
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)

LQ
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3 ,
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64
9

)1/3
)

LQ (α + o(1))
when p = LQ (α)

medium p high psmall p
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The Multiple Number Field Sieve,

Joint work with Razvan Barbulescu (ANTS 2014). Idea from
integer factorization [Coppersmith 93] and prime fields [Matyukhin 03].

Our aim is twofold :

extend the scope of
Matyukhin’s variant from
prime fields to all high
characteristic finite fields.

propose a variation in the
medium characteristic case
with a better improvement.

⇒ Best algorithm to solve the DLP for medium and high
characteristic finite fields Fpn .
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Main idea : from 2 to V number fields

With m a root of the polynomials f1, . . . , fV in Fpn :

Z [X ]

Q (θ1) Q (θ2) Q (θi ) Q (θV−1) Q (θV )

Fpn

X 7→ θi

θi 7→ m

Choice of polynomials f1 and f2 with a common root m in Fpn

⇒ linear combination ⇒ for i = 3, . . . ,V : fi = αi f1 + βi f2
with αi , βi of the size of

√
V .
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Medium VS High Characteristic
High Characteristic : extending Matyukhin’s variant thanks to a
polynomial selection that did not exist in 2003.

Polynomial selection : by LLL [JLSV06].
f1 and f2 have same size of coefficients but deg f2 > deg f1
⇒ Higher norms in Q(θ2) , . . . ,Q(θV ) than in Q(θ1).
Sieving : keep only linear polynomials that lead to a B-smooth
norm in the first number field and a B′-smooth norm in (at
least) one other number field.

Rq : B > B′ i.e. more important to have a high probability of
smoothness in Q(θ1) than higher probabilities in every Q(θi ).
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Medium VS High Characteristic

Medium Characteristic : balancing the roles of the number fields.

Polynomial selection : continued fraction method [JLSV06].
f1 of degree n, irreducible modulo p and such that :

f1 = g + c · h
where g and h are polynomials with small coeff and c ≈ √p.
Continued fraction gives : c ≡ a/b mod p with a, b ≈ √p.

f2 ≡ bf1 mod p
⇒ f1 and f2 have same degree and same size of coeff
⇒ same norms for all Q(θi ).
Sieving : keep only high degree polynomials that lead to
B-smooth norms in (at least) a pair of number fields.
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Particularities of the Medium Characteristic Case

Benefits of symmetry :
NFS MNFS

Number of number fields 2 V
Size of the factor base 2B VB

Probability of a good relation P P V (V−1)
2 ≈ P V 2

2

⇒ Quadratic gain in the probability : offers the possibility to
lower the time of the sieving and to choose a better
smoothness bound B.
Asymptotically, the complexity is optimal when B = V 3.
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Asymptotic Complexities : NFS
2n
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The take away slide

As a dessert ∗ :

MNFS gave the opportunity to write an analysis of the folklore fact
that the runtime of the individual logarithm phase is negligible
with respect to the total runtime of NFS.

∗. You know, the kind of dessert that seems nice when you order it but feels
really heavy once you already have eaten too much.
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Thank you for your attention !
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Extension of NFS in the boundary case p = Lpn(1/3)

We want to upper-bound the resultant :
| det Sylv(h, f )| 6 Θ‖f ‖deg h‖h‖deg f with Θ = number of
permutations with non zero contributions in the sum.
Θ ? Let deg (h) = n and deg (f ) = t.
Before : Θ 6 nttn. Kalkbrener gives : Θ 6

(n+t
n
)
·
(n+t−1

t
)
.

Because of the following inequalities :

(n+t
n
)
·
(n+t−1

t
)

= n
n+t

(
(n+t)!

n!t!

)2

≤ n
n+t

(
(n+1)···(n+t)

t!

)2

≤ n
n+t

(∏t
i=1

(n+i)
i

)2

≤ n
n+t

∏t
i=1

(n
i + 1

)2
we obtain that Θ 6 (n + 1)2t .
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Choice of Polynomials

Previously (NFS) :
For medium p : f1 irreducible of degree n over Fp and
f2 = f1 + p
Small degrees but high coeffs for f2
For high p : based on lattice reduction of
(f1,Xf1, · · · ,Xd−nf1, p,Xp, · · · ,Xdp)
⇒ f2 is a multiple of f1 modulo p but with smaller coeffs
f1 with not too small coeffs (otherwise we get trivial multiples)
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Some Obstructions Coming from Number Fields
and its Solutions

How to go down ?
Q[θ]

Fpn

No unique factorization over elements ⇒ we consider ideals in
the ring of integers of Q[θ] .
Ideals are not principal ⇒ we (virtually) raise them to the
power of the class number of Q[θ] .
Generators are not unique ⇒ Schirokauers maps.
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