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Introduction definitions and notation

All polynomials will be in F2[x ] (binary polynomials).

Definition

The weight of a polynomial is the number of nonzero coefficients.

Definition

The order of a polynomial p is the smallest M such that xM − 1 is a
multiple of p.

If p is irreducible, its order is the same as the order of all its roots.

Definition

A primitive polynomial of degree m is the minimal polynomial of a
primitive element of the finite extension field F2m . Equivalently, it is a
polynomial with order 2m − 1.

A primitive polynomial is irreducible, but the converse is not true
(example: x4 + x3 + x2 + x + 1).
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Introduction definitions and notation

Left Shift Register Sequence (LFSR)

Definition

An LFSR of length L over F2 is a finite state automaton which, starting
from an initial state (x0, . . . , xL−1), produces a semi-infinite sequence of
bits xt satisfying a linear recurrence relation of degree L.

xt+L =
w−1⊕
i=1

xt+ηi

where ηi are integers in [0, L− 1].

Associated to an LFSR is its feedback polynomial (of weight w) given by

1 + xη1 + . . .+ xηw−1

If this polynomial is irreducible, all other linear recurrence relations (parity
checks) are associated to a multiple of the feedback polynomial. Primitive
polynomials produce sequence with maximal period (2L − 1).
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Introduction definitions and notation

We sometimes denote a binary polynomial by its exponents.

Example

[5, 2, 0] := x5 + x2 + 1 and [3, 2, 0] := x3 + x2 + 1

are weight 3 primitive polynomials of order, respectively, 31 and 7.
Their product is the weight 5 polynomial [8, 7, 4, 3, 0].

With this notation the remainder of division of a polynomial by xN + 1 is
reduction modulo N.

Example (continued)

[129, 2, 0] is a weight 3 multiple both of [5, 2, 0] and [3, 2, 0], since

[129, 2, 0] mod 31 = [5, 2, 0]

and
[129, 2, 0] mod 7 = [3, 2, 0].
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Introduction facts and problem

Lemma

Let p be an irreducible polynomial and let α be a root of p in an extension
field F2m . Then for a polynomial q we have q(α) = 0 if and only if p
divides q.

this implies that

all multiples of an irreducible polynomials p are defined up to division
by xD + 1, where D is the order of p.

all multiples of a product of distinct irreducible polynomials are
defined up to division by xN + 1, where N is the least common
multiples of the orders of the polynomials.

Problem setting

Given a polynomial p of order N and a weight w ≥ 3 find all w -uples
(e1, . . . , ew ) with ej ∈ ZN for j = 1, . . . ,w and such that [e1, . . . , ew ] is a
multiple of p.

We will assume without losing generality that ew = 0.
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Motivation

In order to motivate the problem, we discuss in the following slides an
attack scheme taken from [Lu Vaudenay 2004a]. It is a type of fast
correlation attack against the keystream generator of E0, the stream
cipher used for encryption in Bluetooth Protocol.
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Motivation a class of stream ciphers

Nonlinear combiner with memory

A nonlinear combiner with memory is a keystream generator composed by:

r LFSRs with primitive feedback polynomials p1, . . . , pr .
Output at time t will be denoted by x it .

a memory (an additional register) with an update function that
depends both on memory bits and register outputs.

a nonlinear combiner, that is a nonlinear Boolean function that takes
as input the memory bits and x it ’s and outputs a single keystream bit
zt .
We can always think that

zt = x1
t ⊕ · · · ⊕ x rt ⊕ ct

putting all nonlinear dependance on ct .
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Motivation an example of correlation attack

In our context, a correlation is a bias ε for a bit written as
⊕B

k=1 ct+γk for
certain integers γ1, . . . , γB .
After one (or more) correlations are found, in order to perform a partial
key-recovery attack on one of the registers the effects of the other
registers should be cancelled.

This is the moment where finding low-weight polynomial multiples
becomes important!

PP,CT,MS (UniTN) Multiples of Polynomials YACC14 11 / 31



Motivation an example of correlation attack

In our context, a correlation is a bias ε for a bit written as
⊕B

k=1 ct+γk for
certain integers γ1, . . . , γB .
After one (or more) correlations are found, in order to perform a partial
key-recovery attack on one of the registers the effects of the other
registers should be cancelled.

This is the moment where finding low-weight polynomial multiples
becomes important!

PP,CT,MS (UniTN) Multiples of Polynomials YACC14 11 / 31



Motivation an example of correlation attack

Let us concentrate on attacking the first register and let P(x) be a
polynomial of weight w which is a common multiple of p2, . . . , pr . We
denoted by ηi with i = 1, . . . ,w the exponents of the monomials
appearing in P(x) (we assume η1 = 0 and ηw = D with D the degree of
P). By elementary properties of LFSRs we have that

⊕w
i=1 x

j
t+ηi

= 0 for
every j = 2, . . . ,w . Thus we have that

w⊕
i=1

(
B⊕

k=1

zt+ηi+γk

)
=

w⊕
i=1

(
B⊕

k=1

(x1
t+ηi+γk

⊕ ct+ηi+γk )

)
The bias is thus εw and the data complexity Q of the attack is bounded
from below by 1

ε2w and by D the degree of the polynomial multiple.
It is therefore important to have a target degree D and try to find
polynomials of degree less than D.
Also, the weight w should be small. It usually is w = 3, 4, 5.
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Motivation the case of [Lu Vaudenay 2004a] attack to E0

Polynomials of E0

The following are the 4 primitive polynomials (of weight 5) used in the
LFSRs of E0

p1 = x25 + x20 + x12 + x8 + 1

p2 = x31 + x24 + x16 + x12 + 1

p3 = x33 + x28 + x24 + x4 + 1

p4 = x39 + x36 + x28 + x4 + 1

The key-recovery attack described in [Lu Vaudenay 2004a] assumes that
one can find:

a weight 5 multiple of p2, p3, p4 of degree ≤ 234.3 with
(precomputation) time complexity 236.3;

and a weight 3 multiple of p3, p4 of degree ≤ 236 with
(precomputation) time complexity 237.
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Motivation Birthday-based approaches

Heuristic on low-weight polynomial multiples

Given a polynomial of degree n and a weight w , we want to know which is
the degree at which we can find multiples with weight w . A first answer
uses the following:

Statistical assumption

The multiples of degree at most D of a polynomial of degree n has weight
w with probability '

( D
w−1

)
2−D

The expected number of the polynomials multiples of weight w can be
estimated for large D as:

Nn,w '
( D
w−1

)
2n

' Dw−1

(w − 1)!2n
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Motivation Birthday-based approaches

Birthday-based approaches

The critical degree where polynomials of degree w will start to appear is

D0 ' (w − 1)!
1

w−1 · 2
n

w−1

There is a basic method based on conventional birthday paradox which
finds the multiple of weight w with minimal degree D0 with time
complexity

O(D
dw−1

2
e

0 )

Another method is based on generalized birthday problem ([Wagner 2002])

and finds a multiple of same weight but higher degree (D1 ' 2
n

blog(w−1)c ) in
less time:

O((w − 1) · D1)

Memory complexity for birthday based methods is high (order of D)
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Algorithm requirements

We want an algorithm that does the following:

Requirements

Input:
p1, . . . , pr : r primitive polynomials over F2

w : weight (w ≥ 3)
D: a target degree

Output:
P: a polynomial multiple of p1, . . . , pr with weight w and degree ≤ D

We will break down the solution into steps:

1 A multiple of weight w for a primitive polynomial.

2 A common multiple between r primitive polynomials with coprime
degrees.

3 How do we target a degree D.

4 What happens in the case of nonprime degrees.
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Algorithm Zech logarithms

case r = 1, introducing zech logarithms (w = 3)

Let p be a primitive polynomial of degree m and let α be the primitive
root of order M := 2m − 1.

Definition

The Zech Logarithm with base α of an integer i is the integer j such that
αj = 1 + αi (it is the discrete logarithm of 1 + αi ) and will be denoted by
Zα(i) = j .
When i mod M = 0, we have that 1 + αi = 0 and we will say that Zα(i) is
not defined.

The calculation of a single Zech Logarithm gives a trinomial multiple of
the primitive polynomial p. In fact we have that

1 + αi = αj ↔ 1 + αi + αj = 0↔ p | 1 + x i + x j

In [Didier Laigle-Chapuy 2007] the case of a single primitive polynomial is treated with

discrete logarithms and a time-memory tradeoff approach.
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Algorithm Zech logarithms

case r = 1, w > 3

Let w > 3 and let 0 < e1 < . . . < ew−2 < M. We have that:

1 + αe1 + αe2 + . . .+ αew−2 =

1 + αe1
(
1 + αe2−e1

(
· · ·
(
1 + αew−3−ew−2(1 + αew−2)

)
· · ·
))

Thus, if we can compute the following chain of Zech Logarithms:

ew−1 := Z (e1 + Z (αe2−e1 + Z (· · ·+ Z (ew−3 − ew−2 + Z (ew−2)) · · · )))

we have that [0, e1, . . . , ew−1] is a multiple of p.

Remark

Since Z is a bijection when restricted from (0,M) to (0,M), when
choosing the integers e1, . . . , ew−2 randomly in (0,M) the chance of being
able to compute the chain of Zech Logarithms is very high (you fail in at
most w − 3 cases over Mw−2).

We will denote the above chain of Z s as ZLogsα([e1, . . . , ew−2]).
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Algorithm p1, . . . , pr

r primitive polynomials with coprime orders

Let p1, . . . , pr be r primitive polynomials and let α1, . . . , αr be their
primitive roots. We suppose for the moment that the orders N1, . . . ,Nr

are mutually coprime, and that we know already for each i = 1, . . . , r a
multiple of pi of weight w , which will be denoted by:

[0, ei ,1, . . . , ei ,w−1]

where all ei ,j ∈ (0,Ni ).
Setting N the least common multiple of N1, . . . ,Nr , using Chinese
Remainder Theorem (CRT), we obtain a polynomial of weight w with
exponents ej ∈ (0,N) which is a common multiple of all pi (for
j = 1, . . . ,w − 1; we put ew = 0). We will denote this computation with:

ej ← CRT([e1,j , . . . , er ,j ], [N1, . . . ,Nr ])
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Algorithm p1, . . . , pr

Targeting a degree D

Instead of using CRT for j = 1, . . . ,w − 1, if we want to target a degree D
we proceed as follows:

1 Select w − 2 random distinct integers e1 < e2 < . . . < ew−2 < D.

2 Compute for each i = 1, . . . , r the remainders ei ,1, . . . , ei ,w−2 mod Ni .

3 Compute (if possible, using ZLogs) for each i the ‘missing’ exponent
ei ,w−1 to have that [0, ei ,1, ei ,2, . . . , ei ,w−1] is a multiple of pi .

4 ‘Lift’ the missing exponents ei ,w−1 to an exponent ew−1 ∈ (0,N)
through CRT.

5 If ew−1 ≤ D we have that [0, e1, . . . , ew−1] is a polynomial of weight
w which is a multiple of p1 · p2 · · · pr and has degree ≤ D. Otherwise
repeat from step 1.
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Algorithm p1, . . . , pr

The case of non coprime orders

What happens if (Ni ,Nj) 6= 1 for some (i , j)?

The CRT is able to compute the exponent ew−1 if

ei ,w−1 ≡ ej ,w−1 (mod (Ni ,Nj))

Otherwise we repeat the cycle. . .
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Algorithm pseudocode and complexity

Pseudocode for the algorithm

1: function (p1, . . . , pr ,w ,D)
2: αi ← PrimitiveRoot(pi )

. All lines with i repeat for i = 1, . . . , r
3: Ni ← 2deg(pi ) − 1
4: repeat
5: [e1, . . . , ew−2]← RandomDistinctLessThan(D)
6: [ei ,1, . . . , ei ,w−2]← [e1, . . . , ew−2] mod Ni

7: ei ,w−1 ← ZLogsαi
([ei ,1, . . . , ei ,w−2])

. If not possible, restart the cycle
8: ew−1 ← CRT([e1,w−1, . . . , er ,w−1], [N1, . . . ,Nr ])

. If not possible, restart the cycle
9: until ew−1 ≤ D

10: return 1 + xe1 + . . .+ xew−1

11: end function

Note that memory complexity is O(1)
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Algorithm pseudocode and complexity

Time Complexity of the algorithm

Statistical Assumption

All Zech Logarithm computation Zα with random input produce an output
which is uniformly random over (0,M), where M is the order of α.

Using this assumption we estimate the number of tentative ew−1 to
compute before succeeding as O(N/D).
If there are non coprime factors only a fraction of the cycles produce a
valid ew−1 and we must multiply by the factor P := Π(i ,j),i 6=j(Ni ,Nj) (this
might be a big constant).
During each cycle the most demanding computation is that of the Zech
Logarithm, which we will estimate with a constant C (which depends on
highest prime factor of the orders). This computation is done at most
(w − 2)r times.
Thus the time complexity is

O((1 + C )(w − 2)rP · N
D

)
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Algorithm Magma experiments (E0)

Some experiments

Recall that p1, p2, p3, p4 of E0 have degrees 25, 31, 33, 39.
Note that (N3,N4) = 23 − 1 = 7.
Most difficult logarithm is the one relating to p2.

Experiment 1

Try to find a polynomial multiple of p1 · p3 · p4 (N ≈ 297) with weight
w = 5 and targeting degree D ≤ 235. Best result after ≈ 230 successful
cycles (over a total of 7 times more cycles)

[437879262903241611038,

10286802898, 13210333327, 28706973559, 0]

which has degree ≈ 268.6.
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Some experiments

Recall that p1, p2, p3, p4 of E0 have degrees 25, 31, 33, 39.
Note that (N3,N4) = 23 − 1 = 7.
Most difficult logarithm is the one relating to p2.

Experiment 2

Try to find a polynomial multiple of p2 · p3 · p4 (N ≈ 2103) with weight
w = 5 and targeting degree D ≤ 235. Best result after ≈ 226 successful
cycles (over a total of 7 times more cycles)

[12993903295036269860444,

25576778776, 27393341749, 31182294315, 1004869052, 0]

which has degree ≈ 273.5.
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Algorithm Magma experiments (E0)

Some experiments

Recall that p1, p2, p3, p4 of E0 have degrees 25, 31, 33, 39.
Note that (N3,N4) = 23 − 1 = 7.
Most difficult logarithm is the one relating to p2.

Experiment 3

Try to find a polynomial multiple of p2 · p3 · p4 (N ≈ 2103) with weight
w = 3 and targeting degree D ≤ 260. Best result after ≈ 220.6 successful
cycles (over a total of 7 times more cycles)

[128234895613325077438799,

1018121256595116545, 0]

which has degree ≈ 276.8.
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Algorithm Magma experiments (E0)

Some experiments

Recall that p1, p2, p3, p4 of E0 have degrees 25, 31, 33, 39.
Note that (N3,N4) = 23 − 1 = 7.
Most difficult logarithm is the one relating to p2.

Experiment 4

Try to find a polynomial multiple of p3 · p4 (N ≈ 272) with weight w = 3
and targeting degree D ≤ 237. Best result after ≈ 222.9 successful cycles
(over a total of 7 times more cycles)

[170725371212982,

19352428054, 0]

which has degree ≈ 247.3.
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Conclusions

Conclusions

We have described a log-based approach to find low-weight multiples of a
given polynomial.
With respect to existing birthday-based approaches, it has better time
complexity for a range of parameters not usually useful for applications (it
is better when D is nearer to N), but in some cases it is competitive with
respect to time complexity (and in this case it is preferable since it has
minimal memory requirements).
The analysis of the algorithm has also shown that it is able to capture
different phenomena than those that are invisible to a birthday-based
approach.
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Conclusions

Future work

Directions of future work:

extend the algorithm to irreducible not primitive polynomial and to
power of primitive polynomials (already done).

try to find a time-memory tradeoff approach.

use properties of Zech logarithms to ‘guide’ the random search faster
to the target.

question: can we find primitive polynomials with no low-weight
multiples?

Thank you for the attention!
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