Public key cryptosystems based on algebraic geometry codes

Ruud Pellikaan
g.r.pellikaan@tue.nl
joint work with
Alain Couvreur, Irene Márquez-Corbella Edgar Martínez-Moro and Diego Ruano

YACC, Porquerolles, 10 June 2014

Introduction and content

- Error correcting pairs
- Codes on curves
- Error correcting pairs for codes on curves
- Majority coset decoding and error correcting arrays
- Error correcting arrays for codes on curves
- Code based public key cryptosystem
- Reverse engineering AG codes
- Error correcting pairs and arrays from codes on curves
- Questions

Error correcting codes

C linear block code: \mathbb{F}_{q}-linear subspace of \mathbb{F}_{q}^{n}

parameters $[n, k, d]$:
$n=$ length
$k=$ dimension of C
$d=$ minimum distance of C

$$
d=\min |\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}|
$$

$t=$ error correcting capacity of C

$$
t=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

Inner and star product

The standard inner product is defined by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

For two subsets A and B of \mathbb{F}_{q}^{n}
$A \perp B$ if and only if $\mathbf{a} \cdot \mathbf{b}=0$ for all $\mathbf{a} \in A$ and $\mathbf{b} \in B$
Let a and b in \mathbb{F}_{q}^{n}
The star product is defined by coordinatewise multiplication:

$$
\mathbf{a} * \mathbf{b}=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

For two subsets A and B of \mathbb{F}_{q}^{n}

$$
A * B=\langle\{\mathbf{a} * \mathbf{b} \mid \mathbf{a} \in A \text { and } \mathbf{b} \in B\}\rangle \text { and } A^{(2)}=A * A
$$

Generalized Reed-Solomon codes

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of mutually distinct elements of \mathbb{F}_{q}
Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be an n-tuple of nonzero elements of \mathbb{F}_{q}
Evaluation map:

$$
\mathrm{ev}_{\mathrm{a}, \mathrm{~b}}(f(X))=\left(f\left(a_{1}\right) b_{1}, \ldots, f\left(a_{n}\right) b_{n}\right)
$$

$G R S_{k}(\mathbf{a}, \mathbf{b})=\left\{\operatorname{ev}_{\mathbf{a}, \mathbf{b}}(f(X)) \mid f(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(f(X)<k\}\right.$
Parameters: [$n, k, n-k+1$] if $k \leq n$
Furthermore

$$
\begin{aligned}
& \mathrm{ev}_{\mathrm{a}, \mathrm{~b}}(f(X)) * \mathrm{ev}_{\mathrm{a}, \mathrm{c}}(g(X))=\mathrm{ev}_{\mathrm{a}, \mathrm{~b} * \mathrm{c}}(f(X) g(X)) \\
& G R S_{\mathrm{k}}(\mathrm{a}, \mathrm{~b}) * G R S_{l}(\mathrm{a}, \mathrm{c})=G R S_{\mathrm{k}+l-1}(\mathrm{a}, \mathrm{~b} * \mathrm{c})
\end{aligned}
$$

Error correcting pairs - 1

Let C be a linear code in \mathbb{F}_{q}^{n}
The pair (A, B) of linear subcodes of $\mathbb{F}_{q^{m}}^{n}$ is a called a t-error correcting pair (ECP) over $\mathbb{F}_{q^{m}}$ for C if

$$
\begin{array}{ll}
\text { E. } 1 & (A * B) \perp C \\
\text { E. } 2 & k(A)>t \\
\text { E. } 3 & d\left(B^{\perp}\right)>t \\
\text { E. } 4 & d(A)+d(C)>n
\end{array}
$$

t-ECP for $\operatorname{GRS}_{n-2 t}(\mathrm{a}, \mathrm{b})$

Let $C^{\perp}=G R S_{n-2 t}(\mathbf{a}, \mathbf{b})$, has parameters: $[n, 2 t, n-2 t+1]$
Then $C=G R S_{2 t}(\mathbf{a}, \mathbf{c})$ for some \mathbf{c}
has parameters: [$n, n-2 t, 2 t+1$]
Let $A=G R S_{t+1}(\mathbf{a}, \mathbf{1})$ and $B=G R S_{t}(\mathbf{a}, \mathbf{b})$
Then $(A * B) \subseteq C^{\perp}$
A has parameters $[n, t+1, n-t]$
B has parameters [$n, t, n-t+1$]
So B^{\perp} has parameters $[n, n-t, t+1]$

Hence (A, B) is a t-error correcting pair for C

Error correcting pairs - 2

Let A and B be linear subspaces of $\mathbb{F}_{q^{m}}^{n}$
Let $r \in \mathbb{F}_{q}^{n}$ be a received word
Define the kernel of error locator vectors

$$
K(\mathbf{r})=\{\mathbf{a} \in A \mid(\mathbf{a} * \mathbf{b}) \cdot \mathbf{r}=0 \text { for all } \mathbf{b} \in B\}
$$

Lemma
Let C be an \mathbb{F}_{q}-linear code of length n
Let r be a received word with error vector e
So $\mathbf{r}=\mathbf{c}+\mathbf{e}$ for some $\mathbf{c} \in \mathcal{C}$
If $A * B \subseteq C^{\perp}$, then

$$
K(\mathbf{r})=K(\mathbf{e})
$$

Error correcting pairs - 3

Let (A, B) be a t-ECP for C and J a subset of $\{1, \ldots, n\}$
Define the subspace of A

$$
A(J)=\left\{\mathbf{a} \in A \mid a_{j}=0 \text { for all } j \in J\right\}
$$

Set of zeros of error locator vectors contains the error positions:

Lemma

Let $(A * B) \perp C$
Let \mathbf{e} be an error vector of the received word r
If $I=\operatorname{supp}(e)=\left\{i \mid e_{i} \neq 0\right\}$, then

$$
A(I) \subseteq K(\mathbf{r})
$$

If moreover $d\left(B^{\perp}\right)>w t(e)$, then $A(I)=K(r)$

Error correcting pairs - 4

Theorem

Let C be an \mathbb{F}_{q}-linear code of length n
Let (A, B) be a t-error correcting pair over $\mathbb{F}_{q^{m}}$ for C

Then the basic algorithm corrects t errors for the code C with complexity $\mathcal{O}\left((m n)^{3}\right)$

Codes on curves - 1

Let \mathcal{X} be an algebraic curve defined over \mathbb{F}_{q} of genus g $\mathcal{X}\left(\mathbb{F}_{q}\right)$ is the set of \mathbb{F}_{q}-rational points of \mathcal{X}

Let $\mathbb{F}_{q}(X)$ be the vector space of rational functions on X.
Let f be a rational function and P a place
$v_{P}(f)$ is the valuation of f at P
$(f)=\sum_{P} v_{P}(f) P$ is the principal divisor f
Let $E=\sum m_{P} P$ be a divisor, a finite formal sum of places $\operatorname{deg}(E)=\sum m_{P} \operatorname{deg}(P)$ is the degree of E

$$
L(E)=\left\{f \in \mathbb{F}_{q}(\mathcal{X}) \mid(f) \geq-E, f \neq 0\right\} \cup\{0\}
$$

Riemann-Roch: $\operatorname{dim} L(E) \geq \operatorname{deg}(E)+1-\boldsymbol{g}$ equality holds if $\operatorname{deg}(E)>2 g-2$

Codes on curves - 2

Let \mathcal{X} be an algebraic curve defined over \mathbb{F}_{q} of genus g
Let $\mathcal{P}=\left(P_{1}, \ldots, P_{n}\right)$ an n-tuple of mutual distinct points of $\mathcal{X}\left(\mathbb{F}_{q}\right)$
(If the support of E is disjoint from \mathcal{P}), then the evaluation map

$$
\mathrm{ev}_{\mathcal{P}}: L(E) \rightarrow \mathbb{F}_{q}^{n}
$$

where $\operatorname{ev}_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)$, is well defined.

The algebraic geometry code $C_{L}(\mathcal{X}, \mathcal{P}, E)$ is the image of $L(E)$ under the evaluation map $\mathrm{ev}_{\mathcal{P}}$ If $m<n$, then $C_{L}(\mathcal{X}, \mathcal{P}, E)$ is an $[n, k, d]$ code with

$$
k \geq m+1-g \text { and } d \geq n-m
$$

$n-m$ is called the designed minimum distance of $C_{L}(\mathcal{X}, \mathscr{P}, E)$

Codes on curves - 3

Embedding of \mathcal{X} in linear system of E of degree m
Let $f_{1}, f_{2}, \ldots, f_{k}$ be a basis of $L(E)$

$$
\begin{gathered}
\varphi_{E}: X \longrightarrow \mathbb{P}^{k-1} \\
P \mapsto\left(f_{1}(P): f_{2}(P): \ldots: f_{k}(P)\right)
\end{gathered}
$$

$\mathcal{Y}=\varphi_{E}(\mathcal{X})$ is a curve of degree m in \mathbb{P}^{k-1}
$\mathcal{Q}=\left(\varphi_{E}\left(P_{1}\right), \ldots, \varphi_{E}\left(P_{n}\right)\right)$ projective system

$$
G_{Q}=\left(\begin{array}{ccccc}
f_{1}\left(P_{1}\right) & \cdots & f_{1}\left(P_{j}\right) & \cdots & f_{1}\left(P_{n}\right) \\
f_{2}\left(P_{1}\right) & \cdots & f_{2}\left(P_{j}\right) & \cdots & f_{2}\left(P_{n}\right) \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
f_{k}\left(P_{1}\right) & \cdots & f_{k}\left(P_{j}\right) & \cdots & f_{k}\left(P_{n}\right)
\end{array}\right) \text { generator matrix }
$$

minimum distance $\geq n-m$

Codes on curves - 4

Let ω be a differential form with a simple pole and residue 1 at P_{j} for all $j=1, \ldots, n$ Let K be the canonical divisor of ω

Then

$$
C_{L}(\mathcal{X}, \mathcal{P}, E)^{\perp}=C_{L}\left(\mathcal{X}, \mathcal{P}, E^{\perp}\right)
$$

where $E^{\perp}=P_{1}+\cdots+P_{n}-E+K$
and $\operatorname{deg}\left(E^{\perp}\right)=n-m+2 g-2$
minimum distance is at least
$d^{*}=m-2 g-2$
the designed minimum distance

ECP for AG codes - 1

Let F and G be divisors
Then there is a well defined linear map

$$
L(F) \otimes L(G) \longrightarrow L(F+G)
$$

given on generators by

$$
f \otimes g \mapsto f g
$$

Hence

$$
C_{L}(\mathcal{X}, \mathcal{P}, F) * C_{L}(\mathcal{X}, \mathcal{P}, G) \subseteq C_{L}(\mathcal{X}, \mathcal{P}, F+G)
$$

Equality holds if $\operatorname{deg}(F) \geq 2 g$ and $\operatorname{deg}(G) \geq 2 g+1$

ECP for AG codes - 2

$$
\text { Let } C=C_{L}(\mathcal{X}, \mathcal{P}, E)^{\perp}
$$

Choose a divisor F with support disjoint from \mathcal{P}
Let $A=C_{L}(\mathcal{X}, \mathcal{P}, F)$
Let $B=C_{L}(\mathcal{X}, \mathcal{P}, E-F)$
Then
$-A * B \subseteq C^{\perp}$

- If $t+g \leq \operatorname{deg}(F)<n$, then $k(A)>t$
- If $\operatorname{deg}(E-F)>t+2 g-2$, then $d\left(B^{\perp}\right)>t$
- If $\operatorname{deg}(E-F)>2 g-2$, then $d(A)+d(C)>n$

ECP for AG codes - 3

Proposition

An algebraic geometry code of designed minimum distance d from a curve over \mathbb{F}_{q} of genus g has a t-error correcting pair over \mathbb{F}_{q} where

$$
t=\left\lfloor\frac{d-1-g}{2}\right\rfloor
$$

ECP for AG codes - 4

Proposition

An algebraic geometry code of designed minimum distance d^{*} from a curve over \mathbb{F}_{q} of genus g has a t^{*}-error correcting pair over $\mathbb{F}_{q^{m}}$ where

$$
t^{*}=\left\lfloor\frac{d^{*}-1}{2}\right\rfloor
$$

if

$$
m>\log _{q}\left(2\binom{n}{t}+2\binom{n}{t+1}+1\right)
$$

Not constructive!
Majority coset decoding gives a constructive and efficient approach

Coset decoding

Feng-Rao, Duursma
Let C be a code for which we need a decoding algorithm Let D be a subcode for which we have a decoding algorithm

Coset decoding is an algorithm Input: x such that $x=e+c$ and $c \in C$
Output: y such that $y=e+d$ and $d \in D$

Solution:

- Majority voting of unknown syndromes
- Majority coset decoding
- Error correcting array

Error correcting array - 1

An array of codes is a triple $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ of sequences of linear codes in \mathbb{F}_{q}^{n} $\mathcal{A}=\left(A_{i} \mid 1 \leq i \leq u\right), \mathscr{B}=\left(B_{j} \mid 1 \leq j \leq v\right)$ and $\mathcal{C}=\left(C_{r} \mid w \leq r \leq l\right)$ such that:
$-\operatorname{dim}\left(A_{i}\right)=i, \operatorname{dim}\left(B_{j}\right)=j$ and $\operatorname{dim}\left(C_{r}\right)=n-r$

- $A_{i} \subseteq A_{i+1}, B_{j} \subseteq B_{j+1}$ and $C_{r+1} \subseteq C_{r}$
- For every i and j there exists an r such that $A_{i} * B_{j} \subseteq\left(C_{r}\right)^{\perp}$

Let $r(i, j)$ be the smallest index r such that $A_{i} * B_{j} \subseteq\left(C_{r}\right)^{\perp}$

- If $w<r(i, j)$ then $r(i, j)$ is strictly increasing in both arguments:
if $1<i$ then $r(i-1, j)<r(i, j)$, and if $1<j$ then $r(i, j-1)<r(i, j)$.
- If $\mathrm{a} \in A_{i} \backslash A_{i-1}$ and $\mathrm{b} \in B_{j} \backslash B_{j-1}$ and $r=r(i, j) \geq w+1$
then $\mathbf{a} * \mathbf{b}$ is an element of $\left(C_{r}\right)^{\perp} \backslash\left(C_{r-1}\right)^{\perp}$

Error correcting array - 2

Define the following set

$$
N_{r}=\{(i, j) \mid 1 \leq i \leq u, 1 \leq j \leq v, r(i, j)=r+1\}
$$

Let v_{r} be the number of elements of N_{r}. Define order bound

$$
d_{r}=\min \left\{v_{r^{\prime}} \mid r \leq r^{\prime}<l\right\} \cup\left\{d\left(C_{l}\right)\right\} .
$$

Theorem
For an array of codes we have that $d_{r} \leq d\left(C_{r}\right)$, for all $w \leq r \leq l$.

Error correcting array - 3

Proposition

Let C be code with a subcode D of codimension one Let a_{1}, \ldots, a_{w} and b_{1}, \ldots, b_{w} such that

$$
\begin{cases}\mathbf{a}_{i} * \mathbf{b}_{j} \in C^{\perp} & \text { if } i+j \leq w, \\ \mathbf{a}_{i} * \mathbf{b}_{j} \in D^{\perp} \backslash C^{\perp} & \text { if } i+j=w+1 .\end{cases}
$$

Then all words of $C \backslash D$ have weight at least w

Error correcting array - 4

Proof: Let $\mathbf{c} \in C \backslash D$

Let A be the $w \times n$ matrix with the a_{i} ' s as rows
Let B be the $w \times n$ matrix with the b_{j} 's as rows Let D (c) be the diagonal matrix with c on the diagonal Let $S(c)$ be the $w \times w$ matrix with entries $s_{i, j}=\mathbf{a}_{i} * \mathbf{b}_{j} \cdot \mathbf{c}$ Then

$$
A D(\mathrm{c}) B^{T}=S(\mathrm{c})
$$

and

$$
\begin{cases}s_{i, j}=0 & \text { if } i+j \leq w \\ s_{i, j} \neq 0 & \text { if } i+j=w+1\end{cases}
$$

Hence $w t(c)=\operatorname{rk}(D(c)) \geq \operatorname{rk}(S(c))=w$

Error correcting array - 5

Let $w=2 t+1$
$\left(\begin{array}{llllllll}0 & 0 & \cdots & 0 & 0 & \cdots & 0 & s_{1, w} \\ 0 & 0 & \cdots & 0 & 0 & \cdots & s_{2, w-1} & s_{2, w-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & s_{t, t+1} & \cdots & s_{t, w-1} & s_{t, w} \\ 0 & 0 & \cdots & s_{t+1, t} & s_{t+1, t+1} & \cdots & s_{t+1, w-1} & s_{t+1, w} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & s_{w-1,2} & \cdots & s_{w-1, t} & s_{w-1, t+1} & \cdots & s_{w-1, w-1} & s_{w-1, w} \\ s_{w, 1} & s_{w, 2} & \cdots & s_{w, t} & s_{w, t+1} & \cdots & s_{w, w-1} & s_{w, w}\end{array}\right)$

Majority coset decoding - 1

An array of codes $(\mathcal{A}, \mathscr{B}, \mathcal{C})$ of is called a t-error correcting array for a code C
if $C=C_{w}$ and $t \leq\left(d_{w}-1\right) / 2$
And $C_{l}=0$ or
there exists i and j such that
$\left(A_{i}, B_{j}\right)$ is a t-error correcting pair for C_{r}, where $r=r(i, j)$
Theorem
If a code has a t-error correcting array then it has a decoding algorithm which corrects t errors of complexity $\mathcal{O}\left(n^{3}\right)$

Majority coset decoding - 2

Decoding: Let r be a received word with $\mathrm{r}=\mathrm{c}+\mathrm{e}$ and $\mathrm{c} \in C \backslash D$ and error vector e
Let $S(\mathbf{r})$ be the $t \times t$ syndrome matrix with entries $s_{i, j}(\mathbf{r})=\mathrm{a}_{i} * \mathbf{b}_{j} \cdot \mathbf{r}$ Then

$$
s_{i, j}(\mathbf{r})=s_{i, j}(\mathbf{e}) \text { if } i+j \leq w
$$

are called the known syndromes
Now D has codimension one in C, so there exists a $\mathbf{d} \in D^{\perp} \backslash C^{\perp}$ and $\lambda_{i j} \in \mathbb{F}_{q}^{*}$ for $i+j=w+1$ such that

$$
\mathbf{a}_{i} * \mathbf{b}_{j} \equiv \lambda_{i j} \mathbf{d} \quad \bmod C^{\perp}
$$

Hence the unknown syndromes are related to d • rby:

$$
s_{i, j}(\mathbf{r})=\lambda_{i j} d \cdot r \text { if } i+j=w+1
$$

Majority coset decoding - 3

Let $w=2 t+1$

$$
\left(\begin{array}{llllllll}
s_{1,1} & s_{1,2} & \cdots & s_{1, t} & s_{1, t+1} & \cdots & s_{1, w-1} & s_{1, w} \\
s_{2,1} & s_{2,2} & \cdots & s_{2, t} & s_{2, t+1} & \cdots & s_{2, w-1} & \\
\vdots & \vdots & \ddots & \vdots & \vdots & & & \\
s_{t, 1} & s_{t, 2} & \cdots & s_{t, t} & s_{t, t+1} & & & \\
s_{t+1,1} & s_{t+1,2} & \cdots & s_{t+1, t} & & & \\
\vdots & \vdots & & & & & \\
s_{w-1,1} & s_{w-1,2} & & & & & \\
s_{w, 1} & & & & & &
\end{array}\right)
$$

ECA for AG codes

Let $C=C_{L}(\mathcal{X}, \mathcal{P}, E)^{\perp}$
with designed minimum distance $d^{*}=m-2 g+2$
and $t^{*}=\left\lfloor\frac{d^{*}-1}{2}\right\rfloor$
Choose a point P disjoint from \mathcal{P}
Let $A_{i}=C_{L}\left(\mathcal{X}, \mathcal{P}, \alpha_{i} P\right)$
with $\left(\alpha_{i}\right)$ the Weierstrass non-gap sequence at P
Let $B_{j}=C_{L}\left(\mathcal{X}, \mathcal{P}, E+\beta_{j} P\right)$
with $\left(\beta_{j}\right)$ the non-gap sequence of E at P
Let $C_{r}=C_{L}\left(\mathcal{X}, \mathcal{P}, E+\beta_{r} P\right)^{\perp}$

Let $\mathscr{A}=\left(A_{i} \mid 1 \leq i \leq u\right), \mathscr{B}=\left(B_{j} \mid 1 \leq j \leq v\right), \mathcal{C}=\left(C_{r} \mid w \leq r \leq l\right)$

Then $(\mathscr{A}, \mathscr{B}, \mathcal{C})$ is an t^{*}-error correcting array of codes

Code based PKC system

Take a class of codes that have an efficient decoding algorithm: Scramble a generator matrix such that it looks like a random code

- Goppa codes (McEliece)
- with parity check matrix instead of generator matrix (Niederreiter)
- Algebraic geometry codes (Janwa-Moreno)
- subcodes of GRS codes (Berger-Loidreau)
- subfield subcodes of algebraic geometry codes (Janwa-Moreno)

Reverse engineering AG codes - 1

Let \mathcal{X} be an absolutely irreducible and nonsingular curve of genus g over the perfect field \mathbb{F}

Let E be a divisor on \mathcal{X} of degree m

If $m \geq 2 g+1$
then φ_{E} gives an embedding of \mathcal{X} onto $\mathcal{Y}=\varphi_{E}(\mathcal{X})$
which is a normal curve in the linear system $|E|=\mathbb{P}^{m-g}$

If $m \geq 2 g+2$, then \mathcal{y} is an intersection of quadrics
More precisely:
$I(\mathcal{Y})$ is generated by $I_{2}(\mathcal{Y})$
the set of homogeneous elements of degree two in $I(y)$

Reverse engineering AG codes - 2

Conic determined by 5 points

Reverse engineering AG codes - 3

Let y be a curve embedded in projective r-space of degree m
Let $I(\mathcal{Y})$ be the vanishing ideal of y
Let \mathcal{Q} be a subset of \mathscr{y} of n points
Then

$$
I(y) \subseteq I(Q)
$$

Hence

$$
I_{2}(\mathcal{Y}) \subseteq I_{2}(\mathcal{Q})
$$

Suppose $I(\mathcal{Y})$ is generated by $I_{2}(\mathcal{Y})$

$$
\text { If } n>2 m, \text { then } I_{2}(y)=I_{2}(Q)
$$

By Bézout's Theorem

Reverse engineering AG codes - 4

$\mathrm{g}_{1}, \ldots, \mathrm{~g}_{k}$ a basis of C

$S^{2}(C)$ is the second symmetric power of C
$S^{2}(C)$ has basis $\left\{X_{i} X_{j} \mid 1 \leq i \leq j \leq n\right\}$ and dimension $\binom{k+1}{2}$ with $X_{i}=\mathbf{g}_{i}$
$C^{(2)}=C * C$ the square of C
Consider the linear map

$$
\begin{array}{llll}
\sigma: & S^{2}(C) & \longrightarrow C^{(2)} \\
& X_{i} X_{j} & \longmapsto \mathbf{g}_{i} * \mathbf{g}_{j}
\end{array}
$$

$K_{2}(C)$ is the kernel of this map

Reverse engineering AG codes - 5

Then

$$
0 \longrightarrow K_{2}(C) \longrightarrow S^{2}(C) \longrightarrow C^{(2)} \longrightarrow 0
$$

is an exact sequence and

$$
I_{2}(\mathcal{Q})=K_{2}(C):=\left\{\sum_{1 \leq i \leq j \leq k} a_{i j} X_{i} X_{j} \mid \sum_{1 \leq i \leq j \leq k} a_{i j} g_{i} * g_{j}=0\right\}
$$

Proposition

Let \mathcal{Q} be an n-tuple of points in \mathbb{P}^{r} over \mathbb{F} not in a hyperplane Then the complexity of the computation of $I_{2}(Q)$ is at most $\mathcal{O}\left(n^{4}\right)$

Reverse engineering AG codes - 6

C is called very strong algebraic-geometric (VSAG)
if $C=C_{L}(\mathcal{X}, \mathcal{P}, E)$ and the curve \mathcal{X} has genus g
\mathcal{P} consists of n points and E has degree m such that

$$
2 g+2 \leq m<\frac{1}{2} n \text { or } \frac{1}{2} n+2 g-2<m \leq n-4
$$

The dual of a VSAG code is again VSAG

Reverse engineering AG codes - 7

Main Theorem

Let C be a VSAG code

Then a VSAG representation of C can be obtained efficiently from its generator matrix

Moreover all VSAG representations of C are strict isomorphic

Error correcting pair from VSAG code - 1

Shortcut via t-ECP pair (A, B) in \mathbb{F}_{q}^{n}
Bypassing computation of triple $(\mathcal{X}, \mathcal{P}, E)$ and Riemann-Roch spaces

	$\mathbb{F}_{q}(\mathcal{X})$	\mathbb{F}_{q}^{n}
$(\mathcal{X}, \mathcal{P}, E)$	$L(E)$	$C=C_{L}(\mathcal{X}, \mathcal{P}, E)^{\perp}$
$\left(\mathcal{X}, \mathcal{P}, i P_{1}\right)$	$L\left(i P_{1}\right)$	$C_{L}(\mathcal{X}, \mathcal{P}, E)$
$\left(\mathcal{X}, \mathcal{P}, E-j P_{1}\right)$	$L\left(E-j P_{1}\right)$	$D_{j}=C_{L}\left(\mathcal{X}, \mathcal{P}, i P_{1}\right)$

Error correcting pair from VSAG code - 2

In fact, D_{j} is the space of those code words in C^{\perp} that are zero with multiplicity j at P_{1}
This multiplicity can be controlled since we computed $I_{2}(Q)$ efficiently

Proposition
Let $A_{i}:=\left\langle D_{i} * C\right\rangle^{\perp}$, then
$\left(A_{t+g}, D_{t+g}\right)$ is a t-ECP for C with $t=\left\lfloor\left(d^{*}-1-g\right) / 2\right\rfloor$

Still reference to multiplicities

Error correcting pair from VSAG code - 3

Circumventing multiplicities altogether :
Let $A_{i}=C_{L}\left(\mathcal{X}, \mathcal{P}, i P_{1}\right)$ and $D_{j}=C_{L}\left(\mathcal{X}, \mathcal{P}, E-j P_{1}\right)$
Then $D_{0}=C_{L}(\mathcal{X}, \mathcal{P}, E)=C^{\perp}$
And $D_{1}=C_{L}\left(\mathcal{X}, \mathcal{P}, E-P_{1}\right)$,
the space of code words in C^{\perp} that are zero at the first position
So D_{0} and D_{1} are easily computed for given C
The D_{j} are obtained as follows by induction
Proposition

$$
\begin{gathered}
D_{j+1}=\left\{z \in D_{j} \mid z * D_{j-1} \subseteq D_{j}^{(2)}\right\} \\
A_{i}=\left\langle D_{i} * C\right\rangle^{\perp}
\end{gathered}
$$

$$
\left(A_{t+g}, D_{t+g}\right) \text { is a } t-\text { ECP for } C \text { with } t=\left\lfloor\left(d^{*}-1-g\right) / 2\right\rfloor
$$

Error correcting array from VSAG code

Proposition

If $\frac{n}{2}+i-2 \geq m \geq 2 g+i+1$, then

$$
\begin{gathered}
D_{j+1}=\left\{z \in D_{j} \mid z * D_{j-1} \subseteq D_{j}^{(2)}\right\} \\
A_{i}=\left\langle D_{i} * C\right\rangle^{\perp}
\end{gathered}
$$

If $i \geq 2 g+1$, then

$$
A_{i+1}=\left\{\mathbf{z} \in \mathbb{F}_{q}^{n} \mid \mathbf{z} * A_{i-1} \subseteq\left(A_{i}\right)^{(2)}\right\}
$$

Conclusion/questions

- Algebraic geometry codes are not suitable for a McEliece PKC
- What about (subfield) subcodes of AG codes?
- What about codes from varieties of dimension lager than 1 ?
- What about Reed-Muller and order domain codes?

