Public key cryptosystems based on algebraic geometry codes

Ruud Pellikaan g.r.pellikaan@tue.nl

joint work with Alain Couvreur, Irene Márquez-Corbella Edgar Martínez-Moro and Diego Ruano

YACC, Porquerolles, 10 June 2014

- Error correcting pairs
- Codes on curves
- Error correcting pairs for codes on curves
- Majority coset decoding and error correcting arrays
- Error correcting arrays for codes on curves
- Code based public key cryptosystem
- Reverse engineering AG codes
- Error correcting pairs and arrays from codes on curves
- Questions

2/41

C linear block code: \mathbb{F}_q -linear subspace of \mathbb{F}_q^n

```
parameters [n, k, d]:

n = \text{length}

k = \text{dimension of } C

d = \text{minimum distance of } C
```

$$d = \min |\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}|$$

t = error correcting capacity of C

$$t = \lfloor \frac{d-1}{2} \rfloor$$

The standard inner product is defined by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \cdots + a_n b_n$$

For two subsets A and B of \mathbb{F}_q^n A \perp B if and only if $\mathbf{a} \cdot \mathbf{b} = 0$ for all $\mathbf{a} \in A$ and $\mathbf{b} \in B$

Let **a** and **b** in \mathbb{F}_q^n The star product is defined by coordinatewise multiplication:

a * **b** =
$$(a_1 b_1, ..., a_n b_n)$$

For two subsets *A* and *B* of \mathbb{F}_q^n

$$A * B = \langle \{a * b \mid a \in A \text{ and } b \in B\} \rangle$$
 and $A^{(2)} = A * A$

Let $\mathbf{a} = (a_1, \dots, a_n)$ be an *n*-tuple of mutually distinct elements of \mathbb{F}_q Let $\mathbf{b} = (b_1, \dots, b_n)$ be an *n*-tuple of nonzero elements of \mathbb{F}_q Evaluation map:

$$ev_{\mathbf{a},\mathbf{b}}(f(\mathbf{X})) = (f(a_1)b_1,\ldots,f(a_n)b_n)$$

 $GRS_k(\mathbf{a}, \mathbf{b}) = \{ ev_{\mathbf{a}, \mathbf{b}}(f(X)) \mid f(X) \in \mathbb{F}_q[X], deg(f(X) < k \} \}$

Parameters: [n, k, n - k + 1] if $k \le n$ Furthermore

$$ev_{a,b}(f(X)) * ev_{a,c}(g(X)) = ev_{a,b*c}(f(X)g(X))$$

 $GRS_k(\mathbf{a}, \mathbf{b}) * GRS_l(\mathbf{a}, \mathbf{c}) = GRS_{k+l-1}(\mathbf{a}, \mathbf{b} * \mathbf{c})$

Let *C* be a linear code in \mathbb{F}_{q}^{n}

```
The pair (A, B) of linear subcodes of \mathbb{F}_{q^m}^n is a called a t-error correcting pair (ECP) over \mathbb{F}_{q^m} for C if
```

E.1 $(A * B) \perp C$ E.2 k(A) > tE.3 $d(B^{\perp}) > t$ E.4 d(A) + d(C) > n

6/41

Let $C^{\perp} = GRS_{n-2t}(\mathbf{a}, \mathbf{b})$, has parameters: [n, 2t, n-2t+1]Then $C = GRS_{2t}(\mathbf{a}, \mathbf{c})$ for some **c** has parameters: [n, n-2t, 2t+1]

```
Let A = GRS_{t+1}(\mathbf{a}, \mathbf{1}) and B = GRS_t(\mathbf{a}, \mathbf{b})
Then (A * B) \subseteq C^{\perp}
```

A has parameters [n, t + 1, n - t]B has parameters [n, t, n - t + 1]So B^{\perp} has parameters [n, n - t, t + 1]

Hence (A, B) is a t-error correcting pair for C

Let A and B be linear subspaces of $\mathbb{F}_{q^m}^n$ Let $r \in \mathbb{F}_q^n$ be a received word Define the kernel of error locator vectors

 $K(\mathbf{r}) = \{ \mathbf{a} \in A \mid (\mathbf{a} \ast \mathbf{b}) \cdot \mathbf{r} = 0 \text{ for all } \mathbf{b} \in B \}$

Lemma

Let *C* be an \mathbb{F}_q -linear code of length *n* Let **r** be a received word with error vector **e** So **r** = **c** + **e** for some **c** \in *C* If $A * B \subseteq C^{\perp}$, then $K(\mathbf{r}) = K(\mathbf{e})$

Let (A, B) be a *t*-ECP for *C* and *J* a subset of $\{1, ..., n\}$ Define the subspace of *A*

$$\mathbf{A}(\mathbf{J}) = \{ \mathbf{a} \in \mathbf{A} \mid a_j = 0 \text{ for all } j \in \mathbf{J} \}$$

Set of zeros of error locator vectors contains the error positions: Lemma Let $(A * B) \perp C$ Let e be an error vector of the received word r If $I = \text{supp}(e) = \{ i \mid e_i \neq 0 \}$, then

 $A(I) \subseteq K(\mathbf{r})$

If moreover $d(B^{\perp}) > wt(e)$, then A(I) = K(r)

Theorem

Let *C* be an \mathbb{F}_q -linear code of length *n* Let (A, B) be a *t*-error correcting pair over \mathbb{F}_{q^m} for *C*

Then the basic algorithm corrects *t* errors for the code *C* with complexity $\mathcal{O}((mn)^3)$

10/4

Let \mathcal{X} be an algebraic curve defined over \mathbb{F}_q of genus g $\mathcal{X}(\mathbb{F}_q)$ is the set of \mathbb{F}_q -rational points of \mathcal{X}

Let $\mathbb{F}_q(\mathfrak{X})$ be the vector space of rational functions on \mathfrak{X} . Let f be a rational function and P a place $v_P(f)$ is the valuation of f at P $(f) = \sum_P v_P(f)P$ is the principal divisor f

Let $E = \sum m_P P$ be a divisor, a finite formal sum of places $deg(E) = \sum m_P deg(P)$ is the degree of E

 $L(E) = \{ f \in \mathbb{F}_q(\mathcal{X}) | (f) \ge -E, \ f \neq 0 \} \cup \{ 0 \}$

Riemann-Roch: dim $L(E) \ge \deg(E) + 1 - g$ equality holds if deg(E) > 2g - 2

Let \mathcal{X} be an algebraic curve defined over \mathbb{F}_q of genus gLet $\mathcal{P} = (P_1, \dots, P_n)$ an *n*-tuple of mutual distinct points of $\mathcal{X}(\mathbb{F}_q)$

(If the support of *E* is disjoint from \mathcal{P}), then the evaluation map

 $ev_{\mathcal{P}}: L(E) \to \mathbb{F}_q^n$

where $ev_{\mathcal{P}}(f) = (f(P_1), \ldots, f(P_n))$, is well defined.

The algebraic geometry code $C_L(\mathcal{X}, \mathcal{P}, E)$ is the image of L(E) under the evaluation map $ev_{\mathcal{P}}$ If m < n, then $C_L(\mathcal{X}, \mathcal{P}, E)$ is an [n, k, d] code with

 $k \ge m+1-g$ and $d \ge n-m$

n - m is called the designed minimum distance of $C_L(\mathcal{X}, \mathcal{P}, E)$

Embedding of \mathcal{X} in linear system of E of degree m Let f_1, f_2, \ldots, f_k be a basis of L(E)

$$\varphi_E : \mathcal{X} \longrightarrow \mathbb{P}^{k-1}$$

$$P \mapsto (f_1(P) : f_2(P) : \dots : f_k(P))$$

$$= \varphi_E(\mathcal{X}) \text{ is a curve of degree } m \text{ in } \mathbb{P}^{k-1}$$

$$= (\varphi_E(P_1), \dots, \varphi_E(P_n)) \text{ projective system}$$

$$\begin{pmatrix} f_1(P_1) & \cdots & f_1(P_j) & \cdots & f_1(P_n) \\ f_2(P_1) & \cdots & f_2(P_1) & \cdots & f_2(P_n) \end{pmatrix}$$

 $G_{Q} = \begin{pmatrix} I_{2}(P_{1}) & \cdots & I_{2}(P_{j}) & \cdots & I_{2}(P_{n}) \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ f_{k}(P_{1}) & \cdots & f_{k}(P_{i}) & \cdots & f_{k}(P_{n}) \end{pmatrix}$ generator matrix

minimum distance > n - m

/ faculteit wiskunde en informatica

y

Let ω be a differential form with a simple pole and residue 1 at P_j for all j = 1, ..., nLet K be the canonical divisor of ω

Then

$$C_L(\mathcal{X}, \mathcal{P}, \mathbf{E})^{\perp} = C_L(\mathcal{X}, \mathcal{P}, \mathbf{E}^{\perp})$$

where $E^{\perp} = P_1 + \cdots + P_n - E + K$ and $deg(E^{\perp}) = n - m + 2g - 2$

minimum distance is at least $d^* = m - 2g - 2$ the designed minimum distance

Let *F* and *G* be divisors Then there is a well defined linear map

$$L(F)\otimes L(G)\longrightarrow L(F+G)$$

given on generators by

$$f \otimes g \mapsto fg$$

Hence

 $\mathsf{C}_{\mathsf{L}}(\mathfrak{X}, \mathcal{P}, \mathsf{F}) \ast \mathsf{C}_{\mathsf{L}}(\mathfrak{X}, \mathcal{P}, \mathsf{G}) \subseteq \mathsf{C}_{\mathsf{L}}(\mathfrak{X}, \mathcal{P}, \mathsf{F} + \mathsf{G})$

Equality holds if $deg(F) \ge 2g$ and $deg(G) \ge 2g + 1$

15/4

Let $C = C_L(\mathcal{X}, \mathcal{P}, E)^{\perp}$

Choose a divisor *F* with support disjoint from \mathcal{P} Let $A = C_L(\mathcal{X}, \mathcal{P}, F)$ Let $B = C_L(\mathcal{X}, \mathcal{P}, E - F)$

Then

- $-A * B \subseteq C^{\perp}$
- $\text{ If } t + g \leq \text{deg}(F) < n \text{, then } k(A) > t$
- If deg(*E* − *F*) > *t* + 2*g* − 2, then $d(B^{\perp}) > t$
- $\text{ If } \deg(E F) > 2g 2$, then d(A) + d(C) > n

16/4

Proposition

An algebraic geometry code of designed minimum distance dfrom a curve over \mathbb{F}_q of genus ghas a *t*-error correcting pair over \mathbb{F}_q where

$$t = \lfloor \frac{d-1-g}{2} \rfloor$$

Proposition

An algebraic geometry code of designed minimum distance d^* from a curve over \mathbb{F}_q of genus ghas a t^* -error correcting pair over \mathbb{F}_{q^m} where

$$t^* = \lfloor \frac{d^* - 1}{2} \rfloor$$

if

$$m > \log_q \left(2\binom{n}{t} + 2\binom{n}{t+1} + 1 \right)$$

Not constructive!

Majority coset decoding gives a constructive and efficient approach

Feng-Rao, Duursma

Let *C* be a code for which we need a decoding algorithm Let *D* be a subcode for which we have a decoding algorithm

Coset decoding is an algorithm Input: x such that x = e + c and $c \in C$ Output: y such that y = e + d and $d \in D$

Solution:

- Majority voting of unknown syndromes
- Majority coset decoding
- Error correcting array

An array of codes is a triple $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ of sequences of linear codes in \mathbb{F}_q^n $\mathcal{A} = (A_i | 1 \le i \le u), \mathcal{B} = (B_j | 1 \le j \le v)$ and $\mathcal{C} = (C_r | w \le r \le l)$ such that:

$$-\dim(A_i) = i$$
, $\dim(B_j) = j$ and $\dim(C_r) = n - r$
 $-A_i \subseteq A_{i+1}$, $B_j \subseteq B_{j+1}$ and $C_{r+1} \subseteq C_r$

- For every *i* and *j* there exists an *r* such that $A_i * B_j \subseteq (C_r)^{\perp}$ Let r(i, j) be the smallest index *r* such that $A_i * B_j \subseteq (C_r)^{\perp}$ - If w < r(i, j) then r(i, j) is strictly increasing in both arguments: if 1 < i then r(i - 1, j) < r(i, j), and if 1 < j then r(i, j - 1) < r(i, j).

- If
$$\mathbf{a} \in A_i \setminus A_{i-1}$$
 and $\mathbf{b} \in B_j \setminus B_{j-1}$ and $r = r(i, j) \ge w + 1$
then $\mathbf{a} * \mathbf{b}$ is an element of $(C_r)^{\perp} \setminus (C_{r-1})^{\perp}$

20/4

Define the following set

$$N_r = \{(i, j) | 1 \le i \le u, 1 \le j \le v, r(i, j) = r + 1\}$$

Let v_r be the number of elements of N_r . Define order bound

$$d_r = \min\{\nu_{r'} | r \leq r' < l\} \cup \{d(C_l)\}.$$

Theorem

For an array of codes we have that $d_r \leq d(C_r)$, for all $w \leq r \leq l$.

21/4:

Proposition

Let C be code with a subcode D of codimension one Let a_1, \ldots, a_w and b_1, \ldots, b_w such that

$$\left\{ \begin{array}{ll} \mathbf{a}_i \ast \mathbf{b}_j \in C^{\perp} & \text{ if } i+j \leq w, \\ \mathbf{a}_i \ast \mathbf{b}_j \in D^{\perp} \setminus C^{\perp} & \text{ if } i+j = w+1 \end{array} \right.$$

Then all words of $C \setminus D$ have weight at least w

22/4

Proof: Let $\mathbf{c} \in C \setminus D$ Let A be the $w \times n$ matrix with the \mathbf{a}_i 's as rows Let B be the $w \times n$ matrix with the \mathbf{b}_j 's as rows Let $D(\mathbf{c})$ be the diagonal matrix with \mathbf{c} on the diagonal Let $S(\mathbf{c})$ be the $w \times w$ matrix with entries $s_{i,j} = \mathbf{a}_i * \mathbf{b}_j \cdot \mathbf{c}$ Then

$$AD(\mathbf{c})B^T = S(\mathbf{c})$$

and

$$\begin{cases} s_{i,j} = 0 & \text{if } i+j \le w, \\ s_{i,j} \ne 0 & \text{if } i+j = w+1. \end{cases}$$

Hence $wt(\mathbf{c}) = rk(D(\mathbf{c})) \ge rk(S(\mathbf{c})) = w$

23/4

Let w = 2t + 1

(0)	0	•••	0	0	•••	0	s _{1,w}
0)	0	•••	0	0	• • •	<i>S</i> _{2,<i>w</i>-1}	<i>s</i> _{2,<i>w</i>-1}
:		÷	·	:	:	:	:	:
0)	0	• • •	0	<i>s</i> _{<i>t</i>,<i>t</i>+1}	• • •	$s_{t,w-1}$	s _{t,w}
0)	0	•••	s _{t+1,t}	$\boldsymbol{s}_{t+1,t+1}$	•••	$s_{t+1,w-1}$	$s_{t+1,w}$
:		:	••.	:	:	:	:	:
0)	<i>s</i> _{w-1,2}	•••	$s_{w-1,t}$	$s_{w-1,t+1}$	• • •	$s_{w-1,w-1}$	$s_{w-1,w}$
\ <u>s</u>	w,1	s _{w,2}	•••	s _{w,t}	$s_{w,t+1}$	•••	$s_{w,w-1}$	S _{W,W}


```
An array of codes (\mathcal{A}, \mathcal{B}, \mathcal{C}) of is called a t-error correcting array for a code C if C = C_w and t \le (d_w - 1)/2
```

And $C_i = 0$ or there exists *i* and *j* such that (A_i, B_i) is a *t*-error correcting pair for C_r , where r = r(i, j)

Theorem

If a code has a *t*-error correcting array then it has a decoding algorithm which corrects *t* errors of complexity $O(n^3)$

Decoding: Let r be a received word with $\mathbf{r} = \mathbf{c} + \mathbf{e}$ and $\mathbf{c} \in C \setminus D$ and error vector \mathbf{e} Let $S(\mathbf{r})$ be the $t \times t$ syndrome matrix with entries $s_{i,j}(\mathbf{r}) = \mathbf{a}_i * \mathbf{b}_j \cdot \mathbf{r}$ Then

$$s_{i,j}(\mathbf{r}) = s_{i,j}(\mathbf{e})$$
 if $i+j \leq w$

are called the known syndromes Now *D* has codimension one in *C*, so there exists a $d \in D^{\perp} \setminus C^{\perp}$ and $\lambda_{ij} \in \mathbb{F}_q^*$ for i + j = w + 1 such that

$$\mathbf{a}_i * \mathbf{b}_j \equiv \lambda_{ij} \mathbf{d} \mod \mathbf{C}^\perp$$

Hence the unknown syndromes are related to **d** · **r** by:

$$s_{i,j}(\mathbf{r}) = \lambda_{ij}\mathbf{d} \cdot \mathbf{r}$$
 if $i+j = w+1$

26/4

Let w = 2t + 1

(s _{1,1}	<i>s</i> _{1,2}	•••	s _{1,t}	$s_{1,t+1}$	• • •	$s_{1,w-1}$	S _{1,W}
<i>s</i> _{2,1}	S _{2,2}	•••	s _{2,t}	s _{2,t+1}	•••	S _{2,W} -1	
÷	:	·	:	:			
s _{t,1}	s _{t,2}	•••	$\boldsymbol{s}_{t,t}$	<i>s</i> _{<i>t</i>,<i>t</i>+1}			
$s_{t+1,1}$	<i>s</i> _{t+1,2}	•••	<i>s</i> _{<i>t</i>+1,<i>t</i>}				
÷	:						-
$s_{w-1,1}$	<i>s</i> _{w-1,2}						
s _{w,1})

ECA for AG codes

Let $C = C_L(\mathcal{X}, \mathcal{P}, E)^{\perp}$ with designed minimum distance $d^* = m - 2g + 2$ and $t^* = \lfloor \frac{d^*-1}{2} \rfloor$

Choose a point *P* disjoint from \mathcal{P} Let $A_i = C_L(\mathcal{X}, \mathcal{P}, \alpha_i P)$ with (α_i) the Weierstrass non-gap sequence at *P* Let $B_j = C_L(\mathcal{X}, \mathcal{P}, E + \beta_j P)$ with (β_j) the non-gap sequence of *E* at *P* Let $C_r = C_L(\mathcal{X}, \mathcal{P}, E + \beta_r P)^{\perp}$

Let $\mathcal{A} = (A_i | 1 \le i \le u)$, $\mathcal{B} = (B_j | 1 \le j \le v)$, $\mathcal{C} = (C_r | w \le r \le l)$

Then $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ is an t^* -error correcting array of codes

Take a class of codes that have an efficient decoding algorithm: Scramble a generator matrix such that it looks like a random code

- Goppa codes (McEliece)
- with parity check matrix instead of generator matrix (Niederreiter)
- Algebraic geometry codes (Janwa-Moreno)
- subcodes of GRS codes (Berger-Loidreau)
- subfield subcodes of algebraic geometry codes (Janwa-Moreno)

Let \mathfrak{X} be an absolutely irreducible and nonsingular curve of genus g over the perfect field \mathbb{F}

Let *E* be a divisor on \mathcal{X} of degree *m*

If $m \ge 2g + 1$ then φ_E gives an embedding of \mathcal{X} onto $\mathcal{Y} = \varphi_E(\mathcal{X})$ which is a normal curve in the linear system $|E| = \mathbb{P}^{m-g}$

If $m \ge 2g + 2$, then \mathcal{Y} is an intersection of quadrics More precisely: $I(\mathcal{Y})$ is generated by $I_2(\mathcal{Y})$ the set of homogeneous elements of degree two in $I(\mathcal{Y})$

30/4

Reverse engineering AG codes - 2

Conic determined by 5 points

31/41

Let \mathcal{Y} be a curve embedded in projective *r*-space of degree *m* Let $I(\mathcal{Y})$ be the vanishing ideal of \mathcal{Y} Let \mathcal{Q} be a subset of \mathcal{Y} of *n* points Then

 $I(\mathcal{Y})\subseteq I(\mathcal{Q})$

Hence

 $I_2(\mathcal{Y}) \subseteq I_2(\mathcal{Q})$

Suppose $I(\mathcal{Y})$ is generated by $I_2(\mathcal{Y})$

If n > 2m, then $l_2(\mathcal{Y}) = l_2(\mathcal{Q})$

By Bézout's Theorem

TU/e Technische Universiteit Eindhoven University of Technolog

32/4:

$\mathbf{g}_1, \ldots, \mathbf{g}_k$ a basis of C

 $S^{2}(C)$ is the second symmetric power of C $S^{2}(C)$ has basis $\{X_{i}X_{j} \mid 1 \leq i \leq j \leq n\}$ and dimension $\binom{k+1}{2}$ with $X_{i} = \mathbf{g}_{i}$

 $C^{(2)} = C * C$ the square of C

Consider the linear map

$$\sigma : \begin{array}{ccc} S^2(C) & \longrightarrow & C^{(2)} \\ X_i X_j & \longmapsto & \mathbf{g}_i * \mathbf{g}_j \end{array}$$

 $K_2(C)$ is the kernel of this map

Then

$$0 \longrightarrow {\it K}_2({\it C}) \longrightarrow {\it S}^2({\it C}) \longrightarrow {\it C}^{(2)} \longrightarrow 0$$

is an exact sequence and

$$I_{2}(Q) = K_{2}(C) := \{ \sum_{1 \le i \le j \le k} a_{ij} X_{i} X_{j} \mid \sum_{1 \le i \le j \le k} a_{ij} g_{i} * g_{j} = 0 \}$$

Proposition

Let \mathcal{Q} be an *n*-tuple of points in \mathbb{P}^r over \mathbb{F} not in a hyperplane Then the complexity of the computation of $I_2(\mathcal{Q})$ is at most $\mathcal{O}(n^4)$

34/4

C is called very strong algebraic-geometric (VSAG)

if $C = C_L(\mathcal{X}, \mathcal{P}, E)$ and the curve \mathcal{X} has genus g \mathcal{P} consists of n points and E has degree m such that

 $2g + 2 \le m < \frac{1}{2}n$ or $\frac{1}{2}n + 2g - 2 < m \le n - 4$

The dual of a VSAG code is again VSAG

Main Theorem

Let C be a VSAG code

Then a VSAG representation of *C* can be obtained efficiently from its generator matrix

Moreover all VSAG representations of C are strict isomorphic

36/4

Shortcut via *t*-ECP pair (*A*, *B*) in \mathbb{F}_q^n Bypassing computation of triple ($\mathfrak{X}, \mathcal{P}, E$) and Riemann–Roch spaces

	$\mathbb{F}_q(\mathfrak{X})$	\mathbb{F}_q^n
		$C = C_{L}(\mathfrak{X}, \mathscr{P}, E)^{\perp}$
$(\mathcal{X}, \mathcal{P}, \mathbf{E})$	L(E)	$C_L(\mathcal{X}, \mathcal{P}, E)$
$(\mathfrak{X}, \mathcal{P}, \mathit{iP}_1)$	$L(iP_1)$	$A_i = C_L(\mathcal{X}, \mathcal{P}, iP_1)$
$(\mathcal{X}, \mathcal{P}, \mathbf{E} - \mathbf{j}\mathbf{P}_1)$	$L(E - jP_1)$	$D_j = C_L(\mathcal{X}, \mathcal{P}, E - jP_1)$

37/4

In fact, D_j is the space of those code words in C^{\perp} that are zero with multiplicity j at P_1 This multiplicity can be controlled since we computed $I_2(Q)$ efficiently

Proposition Let $A_i := \langle D_i * C \rangle^{\perp}$, then (A_{t+g}, D_{t+g}) is a *t*-ECP for *C* with $t = \lfloor (d^* - 1 - g)/2 \rfloor$

Still reference to multiplicities

38/4

Circumventing multiplicities altogether :

Let $A_i = C_L(\mathcal{X}, \mathcal{P}, iP_1)$ and $D_j = C_L(\mathcal{X}, \mathcal{P}, E - jP_1)$ Then $D_0 = C_L(\mathcal{X}, \mathcal{P}, E) = C^{\perp}$ And $D_1 = C_L(\mathcal{X}, \mathcal{P}, E - P_1)$, the space of code words in C^{\perp} that are zero at the first position So D_0 and D_1 are easily computed for given CThe D_i are obtained as follows by induction

Proposition

$$D_{j+1} = \{ z \in D_j \mid z * D_{j-1} \subseteq D_j^{(2)} \}$$
$$A_j = \langle D_j * C \rangle^{\perp}$$

 (A_{t+g}, D_{t+g}) is a t - ECP for C with $t = \lfloor (d^* - 1 - g)/2 \rfloor$

Error correcting array from VSAG code

Proposition If $\frac{n}{2} + i - 2 \ge m \ge 2g + i + 1$, then $D_{j+1} = \{ z \in D_j \mid z * D_{j-1} \subseteq D_j^{(2)} \}$ $A_i = \langle D_i * C \rangle^{\perp}$

If $i \geq 2g + 1$, then

$$A_{i+1} = \{ \mathbf{z} \in \mathbb{F}_q^n \mid \mathbf{z} * A_{i-1} \subseteq (A_i)^{(2)} \}$$

40/41

- Algebraic geometry codes are not suitable for a McEliece PKC
- What about (subfield) subcodes of AG codes?
- What about codes from varieties of dimension lager than 1?
- What about Reed-Muller and order domain codes?

41/4