Anonymity-oriented Signatures based on Lattices

YACC 2014

Fabien LAGUILLAUMIE

fabien.laguillaumie@ens-lyon.fr http://perso.ens-lyon.fr/fabien.laguillaumie

Roadmap

Introduction

- Lattice-based cryptography and Learning with Errors
- Motivation for anonymity-oriented signatures
- Lattice-based group signatures

Conclusion

Cryptography = design of secure protocols

confidentiality - authenticity - integrity

- Public Key Cryptography:
 - Concept: Diffie & Hellman '76
 - ► The secret is secret ~→ a public key is available

 $sk \longleftrightarrow pk$

- First realizations:
 - RSA '78
 - Merkle-Hellman '78
 - McEliece'78
 - Elgamal '84
 - Koblitz / Miller '85

factorization knapsack decoding of error correction codes discrete logarithm over $(\mathbb{F}_q)^{\star}$ discrete logarithm over elliptic curves

Cryptography = design of secure protocols confidentiality

confidentiality - authenticity - integrity

- Public Key Cryptography:
 - Concept: Diffie & Hellman '76
 - ► The secret is secret ~→ a public key is available

 $sk \longleftrightarrow pk$

- First realizations:
 - RSA '78
 - Merkle-Hellman '78
 - McEliece'78
 - Elgamal '84
 - Koblitz / Miller '85

factorization knapsack decoding of error correction codes discrete logarithm over $(\mathbb{F}_q)^*$ discrete logarithm over elliptic curves

Not enough any more !

What does secure mean ?

depends on the application

security model for a cryptographic primitive

```
▶ ~→ proof of its (in)security
```

to prove = to reduce a "hard" problem P to an attack against the scheme Π

Public-Key Cryptography:

BE STRONG - BE QUICK - BE FUNCTIONAL

Lattice-based Cryptography and LWE

Few problems are actually used in cryptography.

Its instances must be hard to solve.
 Breaking the cryptographic primitive must be hard.

- Its instances must be hard to solve.
 Breaking the cryptographic primitive must be hard.
- They must be easy to generate.
 - The cryptographic primitive must be efficient.

- Its instances must be hard to solve.
 Breaking the cryptographic primitive must be hard.
- They must be easy to generate.
 The cryptographic primitive must be efficient.
- They must be described shortly.
 Space and communication must be low.

- Its instances must be hard to solve.
 Breaking the cryptographic primitive must be hard.
- They must be easy to generate.
 The cryptographic primitive must be efficient.
- They must be described shortly.
 Space and communication must be low.
- The problem must be rich, flexible and expressive.
 Some applications need advanced cryptographic primitives.

Good Algorithmic Problems

- 1. Instances hard to solve.
- 2. Instances easy to generate.
- 3. Instances short.
- 4. Rich, flexible, expressive.

The three first criteria are quantifiable:

Good Algorithmic Problems

- 1. Instances hard to solve.
- 2. Instances easy to generate.
- 3. Instances short.
- 4. Rich, flexible, expressive.

The three first criteria are quantifiable:

Security parameter λ : the best known algorithm to break the scheme must have a cost of at least 2^λ.

• Underlying arithmetic algorithms have a cost of $\lambda^{\mathcal{O}(1)}$.

Instances should be represented using $\lambda^{\mathcal{O}(1)}$ bits.

Good Algorithmic Problems

- 1. Instances hard to solve.
- 2. Instances easy to generate.
- 3. Instances short.
- 4. Rich, flexible, expressive.

The three first criteria are quantifiable:

Security parameter λ : the best known algorithm to break the scheme must have a cost of at least 2^λ.

• Underlying arithmetic algorithms have a cost of $\lambda^{\mathcal{O}(1)}$.

Instances should be represented using $\lambda^{\mathcal{O}(1)}$ bits.

▶ The last criteria is less quantifiable...

Factorisation and e-th root modulo a composite number (RSA) :

Poor balance efficiency / security Not very riche, nor flexible, nor expressif.

Factorisation and e-th root modulo a composite number (RSA) :

Poor balance efficiency / security Not very riche, nor flexible, nor expressif.

• Discrete Log and Diffie-Hellman in $(\mathbb{Z}/p\mathbb{Z})^*$:

Same.

Factorisation and e-th root modulo a composite number (RSA) : Poor balance efficiency / security Not very riche, nor flexible, nor expressif.

• Discrete Log and Diffie-Hellman in $(\mathbb{Z}/p\mathbb{Z})^*$:

Same.

Discrete Log and Diffie-Hellman in the group of points of an algebraic curve :

Good balance efficiency / security (excellent in space). Not very riche, nor flexible, nor expressif.

Factorisation and e-th root modulo a composite number (RSA) : Poor balance efficiency / security Not very riche, nor flexible, nor expressif.

• Discrete Log and Diffie-Hellman in $(\mathbb{Z}/p\mathbb{Z})^*$:

Same.

Discrete Log and Diffie-Hellman in the group of points of an algebraic curve :

Good balance efficiency / security (excellent in space). Not very riche, nor flexible, nor expressif.

Discrete Log and Diffie-Hellman in the group of points of a curve equipped with a pairing :

Poor balance efficiency / security

Richer, more flexible and expressif (e.g.. : IBE, ABE).

The Learning With Errors problem – LWE

Informally: Resolution of an overdetermined $m \times n$ linear system which is random, noisy, and modulo a short integer q.

Find $(s_1, s_2, s_3, s_4, s_5)$ such that :

$s_1 + 22s_2 + 17s_3 + 2s_4 + s_5$	\approx	16	mod 23
$3s_1 + 2s_2 + 11s_3 + 7s_4 + 8s_5$	\approx	17	mod 23
$15s_1 + 13s_2 + 10s_3 + s_4 + 22s_5$	\approx	3	mod 23
$17s_1 + 11s_2 + s_3 + 10s_4 + 3s_5$	\approx	8	mod 23
$2s_1 + s_2 + 13s_3 + 6s_4 + 2s_5$	\approx	9	mod 23
$4s_1 + 4s_2 + s_3 + 5s_4 + s_5$	\approx	18	mod 23
$11s_1 + 12s_2 + 5s_3 + s_4 + 9s_5$	\approx	7	mod 23

We can have an arbitrary number of equations.

Other interpretation : decoding of a random linear code for the Euclidean distance.

The Learning With Errors problem – LWE

Informally: Resolution of an overdetermined $m \times n$ linear system which is random, noisy, and modulo a short integer q.

• The best known attacks are exponential in $n \log q$.

 $\Rightarrow \lambda$ is linear in $n \log q$.

• Cost of the generation of the instance is in $mn \log q$. It is often λ^2 .

▶ Binary size of the instance : *mn* log *q*.

The Learning With Errors problem – LWE

Informally: Resolution of an overdetermined $m \times n$ linear system which is random, noisy, and modulo a short integer q.

• The best known attacks are exponential in $n \log q$.

 $\Rightarrow \lambda$ is linear in $n \log q$.

• Cost of the generation of the instance is in $mn \log q$. It is often λ^2 .

Binary size of the instance : $mn \log q$.

Very rich, flexible and expressive : encryption, identity-based encryption, attribute-based encryption, homomorphic encryption, functional encryption, etc.

Gaussian Distributions

Gaussian distribution of parameter s :

$$\begin{array}{l} D_{s}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^{2}}{s^{2}}\right) \\ \forall x \in \mathbb{R} \end{array}$$

Discrete Gaussian Distribution of support ${\mathbb Z}$ and of parameter s :

Gaussian Distributions

Gaussian distribution of parameter s :

$$\begin{array}{l} D_{s}(x) \sim \frac{1}{s} \exp\left(-\pi \frac{x^{2}}{s^{2}}\right) \\ \forall x \in \mathbb{R} \end{array}$$

Discrete Gaussian Distribution of support ${\mathbb Z}$ and of parameter s :

- We know how to sample efficiently.
- Most of the values are in $[-c \cdot s, +c \cdot s]$ for a constant c, if s is not too small.

The LWE problem [Regev05]

Let $n \ge 1$, $q \ge 2$ and $\alpha \in]0, 1[$. For all $\mathbf{s} \in \mathbb{Z}_q^n$, let us define the distribution $D_{n,q,\alpha}(\mathbf{s})$ by : $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$, avec $\mathbf{a} \leftrightarrow U(\mathbb{Z}_q^n)$ et $e \leftarrow D_{\mathbb{Z},\alpha q}$.

Computational LWE

For all s :

from an arbitrary number of samples of $D_{n,q,\alpha}(\mathbf{s})$, recover \mathbf{s} .

Decisional LWE With non-negligeable probability on $\mathbf{s} \leftrightarrow U(\mathbb{Z}_{a}^{n})$:

distinguish the two distributions $D_{n,q,\alpha}(\mathbf{s})$ and $U(\mathbb{Z}_a^{n+1})$.

LWE: matricial view

Decisional variant :

determine if (\mathbf{A}, \mathbf{b}) is of the form above, or uniform.

LWE: hardness Brute Force First variant: • try all the possible $\mathbf{s} \in \mathbb{Z}_q^n$ • is $\mathbf{b} - \mathbf{A} \cdot \mathbf{s}$ small ? \Rightarrow Cost $\approx q^n$.

LWE: hardness

Brute Force

First variant:

▶ try all the possible $\mathbf{s} \in \mathbb{Z}_q^n$ ▶ is $\mathbf{b} - \mathbf{A} \cdot \mathbf{s}$ small ? ⇒ Cost ≈ q^n .

Second variant:

- guess the *n* first errors.
- compute the corresponding s.
- ▶ is b A · s small?
- \Rightarrow Cost $\approx (\alpha q \sqrt{n})^n$.

LWE and lattices

A lattice: $\mathcal{L} = \left\{ \sum_{i=1}^{n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\} \subset \mathbb{R}^n$

If the \mathbf{b}_i are linearly independent, they are called a basis.

Lattices A lattice: $\mathcal{L} = \left\{ \sum_{i=1}^{n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\} \subset \mathbb{R}^n$

If the \mathbf{b}_i are linearly independant, they are called a basis.

A lattice:

$$\mathcal{L} = \left\{ \sum_{i=1}^n x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\} \subset \mathbb{R}^n$$

If the \mathbf{b}_i are linearly independant, they are called a basis.

There are infinitely many basis.

$$\begin{pmatrix} 4 & -3 \\ 2 & 4 \end{pmatrix} \cdot \underbrace{\begin{pmatrix} -4 & -3 \\ -1 & -1 \end{pmatrix}}_{\text{det}=1} = \begin{pmatrix} -13 & -9 \\ -12 & -10 \end{pmatrix}$$

Provide hard problems:

Shortest Vector Problem (SVP $_{\gamma}$)

Minimum :

 $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Provide hard problems:

Shortest Vector Problem (SVP $_{\gamma}$)

Minimum :

 $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

 $\begin{aligned} \mathsf{SVP}_{\gamma} &: \text{ Given a basis of } \mathcal{L}, \text{ find } \mathbf{b} \in \mathcal{L} \\ \text{ s.t. } \mathbf{0} < \|\mathbf{b}\| \leq \gamma \cdot \lambda(\mathcal{L}). \end{aligned}$

Provide hard problems:

Shortest Vector Problem (SVP $_{\gamma}$)

Minimum : $\lambda(L) = \min(||\mathbf{b}|| : \mathbf{b} \in L \setminus \mathbf{0}).$

 $\begin{aligned} \mathsf{SVP}_{\gamma} &: \text{ Given a basis of } \mathcal{L}, \text{ find } \mathbf{b} \in \mathcal{L} \\ \text{ s.t. } \mathbf{0} < \|\mathbf{b}\| \leq \gamma \cdot \lambda(\mathcal{L}). \end{aligned}$

Best known algorithm : **BKZ**

Time $2^t \cdot (n + \log ||B||)^{\mathcal{O}(1)}$ \downarrow Approximation factor $\gamma \approx t^{\mathcal{O}(n/t)}$

Algorithm due to [SchnorrEuchner91], analysed by [HanrotPujolStehlé11].

Hardness of SVP

 $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$

Hardness of SVP

SVP_{γ}; Given a basis of *L*, find **b** \in *L* s.t.

 $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$

• GapSVP_{γ}: Given a basis of L and t, answer

YES if $\lambda(L) \leq t$ and **NO** if $\lambda(L) > \gamma \cdot t$

Hardness of SVP

SVP_{γ} ; Given a basis of *L*, find **b** \in *L* s.t.

 $0 < \|\mathbf{b}\| \le \gamma \cdot \lambda(L)$

• GapSVP_{γ}: Given a basis of L and t, answer

YES if $\lambda(L) \leq t$ and **NO** if $\lambda(L) > \gamma \cdot t$

Hardness of GapSVP $_{\gamma}$

▶ NP-hard if $\gamma \leq \mathcal{O}(1)$ (probabilistic reductions) [Ajtai98,HavivRegev12]

▶ in NP∩coNP if $\gamma \geq \sqrt{n}$ [GoldreichGoldwasser97,AharonovRegev05]

► in P si
$$\gamma \ge \exp\left(n \cdot \frac{\log \log n}{\log n}\right)$$

▶ Decisional LWE ⇐⇒ Computational LWE

Solving LWE using BKZ :

► Decisional LWE ⇐⇒ Computational LWE

Solving LWE using BKZ :

From **A** and **b**, we wish to determine if **b** is an LWE sample or a uniform vector.

Let $L = L(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot \mathbf{A} = \mathbf{0}^T \mod q\}$

- L is a lattice.
- Its dimension is $m: q \cdot \mathbb{Z}^m \subset L$
- Pigeonhole principle: $\lambda_1(L) \leq \sqrt{m}q^{n/m}$
- If $\mathbf{x} \in L \setminus \mathbf{0}$ is short, then $\langle \mathbf{x}, \mathbf{b} \rangle$:
 - is small if **b** is an LWE sample because it is $\langle \mathbf{x}, \mathbf{e} \rangle$,
 - is uniforme modulo q otherwise.
- \Rightarrow For the attack to work, we need

 $\|\mathbf{x}\| \alpha \mathbf{q} \leq \mathbf{q} \iff \|\mathbf{x}\| \leq 1/\alpha.$

▶ Decisional LWE ⇐⇒ Computational LWE

Solving LWE using BKZ :

$$\lambda_1(L) \leq \sqrt{m}q^{n/m}$$
.
We want to find **x** ∈ L s.t. 0 < ||**x**|| ≤ 1/α.

In time 2^t, BKZ computes $\mathbf{x} \in L$ s.t.: $\|\mathbf{x}\| \leq t^{\mathcal{O}(m/t)} \sqrt{m} q^{n/m}$.

The optimal m is $\approx \sqrt{tn \frac{\log q}{\log t}}$ and we get $\|\mathbf{x}\| \leq 2^{\mathcal{O}(\sqrt{\frac{n}{t} \log q \log t})}$.

BKZ's cost to break LWE

Time:
$$\left(\frac{n\log q}{\log^2 \alpha}\right)^{\mathcal{O}\left(\frac{n\log q}{\log^2 \alpha}\right)}$$

• Decisional LWE \iff Computational LWE

Solving LWE using BKZ :
$$\left(\frac{n \log q}{\log^2 \alpha}\right)^{\mathcal{O}\left(\frac{n \log q}{\log^2 \alpha}\right)}$$

Suppose that $\alpha q \ge 2\sqrt{n}$ and that q is prime and polynomial in n. Then there exists a quantum polynomial reduction from GapSVP_{γ} in dimension n to LWE_{n,q,α}, with $\gamma \approx n/\alpha$.

[Regev05]

• There exists a classical polynomial reduction from GapSVP_{γ} in dimension $\approx \sqrt{n}$ to LWE_{*n*,*q*, α}, with $\gamma \approx n^2/\alpha$. [BrakerskiLangloisPeikertRegevStehlé13]

Regev's encryption [Regev05]

Parameters :
$$n, m, q \in \mathbb{Z}, \alpha \in]0, 1[$$
.
Keys : $sk = s$ and $pk = (A, b)$, with $b = A s + e \mod q$
where $s \leftrightarrow U(\mathbb{Z}_q^n)$, $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$, $e \leftrightarrow D_{\mathbb{Z}^m, \alpha q}$.

• Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

Regev's encryption [Regev05]

Correctness (probabilistic)

$$\mathbf{s}\mathbf{k} = \mathbf{s}$$
 and $\mathbf{p}\mathbf{k} = (\mathbf{A}, \mathbf{b})$, with $\mathbf{b} = \mathbf{A} \mathbf{s} + \mathbf{e} \mod q$.

Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

Decryption (\mathbf{u}, \mathbf{v}) : Compute $\mathbf{v} - \mathbf{u}^T \mathbf{s} \mod q$.

Correctness (probabilistic)

$$\mathbf{s}\mathbf{k} = \mathbf{s}$$
 and $\mathbf{p}\mathbf{k} = (\mathbf{A}, \mathbf{b})$, with $\mathbf{b} = \mathbf{A} \mathbf{s} + \mathbf{e} \mod q$.

Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

Decryption (\mathbf{u}, v) : Compute $v - \mathbf{u}^T \mathbf{s} \mod q$.

Why does it work?

- We have $v \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor \cdot M \mod q$
- But $|\mathbf{r}^T \mathbf{e}| \le \|\mathbf{r}\| \|\mathbf{e}\| \le m \alpha q$, with probability ≈ 1 .

Correctness (probabilistic)

$$\mathbf{s}\mathbf{k} = \mathbf{s}$$
 and $\mathbf{p}\mathbf{k} = (\mathbf{A}, \mathbf{b})$, with $\mathbf{b} = \mathbf{A} \mathbf{s} + \mathbf{e} \mod q$.

Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftrightarrow U(\{0,1\}^m)$,

Decryption (\mathbf{u}, v) : Compute $v - \mathbf{u}^T \mathbf{s} \mod q$.

Why does it work?

• We have
$$v - \mathbf{u}^T \mathbf{s} = \mathbf{r}^T \mathbf{e} + \lfloor q/2 \rfloor \cdot M \mod q$$

• But
$$|\mathbf{r}^T \mathbf{e}| \le \|\mathbf{r}\| \|\mathbf{e}\| \le m \alpha q$$
, with probability ≈ 1 .

► If M = 0, then $v - \mathbf{u}^T \mathbf{s} \mod q$ is at most of the order of $m \alpha q$.

We set α so that it is $\ll q$.

▶ If
$$M = 1$$
, then $v - \mathbf{u}^T \mathbf{s} \mod q$ is close to $\lfloor q/2 \rfloor$.

A trapdoor for LWE

Let's recall :

$$L(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T \cdot \mathbf{A} = \mathbf{0}^T \mod q\}$$

- It is a lattice of dimension m,
- \triangleright A short basis allows to generate short vectors in $L(\mathbf{A})$,
- An arbitrary basis does not give any information (solution to LWE).

GenBasis : sample **A** and **S**, a short basis of $L(\mathbf{A})$, simultaneously.

- **S** $\in \mathbb{Z}^{m \times m}$ short
- We have $S A = 0 \mod q$.
- S allows to invert LWE
- Can add constraints: ex. $\mathbf{B}^T \cdot \mathbf{A} = \mathbf{0}$ (with trapdoor)

Another problem

The security of our group signature also relies on :

Short Integer Solution (SIS)

Given $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$, find $\mathbf{x} \in \mathbb{Z}^m \setminus {\mathbf{0}}$ small s.t. $\mathbf{x}^T \cdot \mathbf{A} = 0 \pmod{q}$

L., Langlois and Stehlé. *Chiffrement avancé à partir du problème Learning With Errors*. Chapitre de l'ouvrage "Informatique Mathématique, une photographie en 2014", Presses Universitaires de Perpignan (2014)

Lattice-based Cryptography Toolbox

Last tool :

Given public $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{y} \in \mathbb{Z}_q^n$,

there exist a (3-round) interactive protocol to prove that one knows ${\bf x}$ small such that

$$\mathbf{x}^{\mathsf{T}}\mathbf{A} = \mathbf{y}^{\mathsf{T}}$$

without revealing any information of **x**.

zero-knowledge proof of knowledge

Anonymity-Oriented Signatures

Cryptographic motivations

Need for authenticity and anonymity

Anonymous credentials: anonymous use of certified attributes

Ex.: student card - name, picture, date, grade,...

→ non-anonymous

 Idemix (Identity-Mixer) of IBM Anonymous credential system developed at IBM Research [...] that enables strong authentication and privacy at the same time.

selective revelation of attributes

 Traffic management (Vehicle Safety Communications project of the U.S. Dept. of Transportation)

vehicle-based collision countermeasures

Intensive use of group signatures

Group signatures allow member of a group to anonymously and accountably sign on behalf of this group

[ChaumVanHeyst91]

- Involve :
 - ▶ Group manager (mpk, msk) + gsk_i
 - Opening authority (osk)
 - Group members (gsk_i)

KeyGen Open Sign Verify

signature $\sqrt{}$ but who signed ??

Security requirements [BellareMicciancioWarinschi03] :

Anonymity

a given signature does not leak the identity of its originator

Traceability

no collusion of malicious users can produce a valid signature that cannot be traced to one of them

Issues :

security model

ex. anonymity

efficiency

compact signatures, short keys, fast operations

additional properties

revocation, dynamicity

Generic construction [BellareMicciancioWarinschi03] :

Ingredients :

- Signature & Encryption schemes
- non-interactive zero knowledge proof system [FeigeLapidotShamir99] + [Sahai99] :

if trapdoor permutations exist, then any NP-relation has a such a proof

Scheme:

✓ Group manager produces a certificate Cert_i = Sign_{sk_s}(i||pk_i)

- Member *i* :
 - 1. $\sigma = \operatorname{Sign}_{\mathsf{s}k_i}(m)$
 - 2. $c = Encrypt_{pk_o}(i||pk_i||Cert_i||\sigma)$
 - 3. $\Pi = \operatorname{Proof}(\sigma \text{ valid } \wedge \operatorname{Cert}_i \text{ valid})$
 - 4. Output $\Sigma = (c, \Pi)$
- Verification: check the validity of proof
- Opening authority decrypts C if Π valid

Security of this construction :

It is fully-anonymous if the encryption scheme and the proof are "secure"

It is traceable if the signature scheme and the proof are "secure"

Remarks:

- Inefficient in general
- Many constructions nevertheless follow this paradigm
- Breakthrough : [Groth06,GrothSahai2006]
 Pairing-based simulation-sound NIZK Proofs without random oracles

Lattice-based Group Signatures

First lattice-based construction : [GordonKatzVaikuntanathan2010]

Main drawbacks : size of the signatures - O(N) N group members
 Ideas :

 $\begin{array}{l} \bullet \quad \text{Keys of the authority :} \\ \left\{ \begin{array}{l} \text{public parameters} = \{\mathbf{A}_i, \mathbf{B}_i\}_i \text{ s.t. } \mathbf{A}_i \cdot \mathbf{B}_i^T = 0 \pmod{q} \\ \text{tracing key} = \mathbf{S}_i & \text{short basis} \\ sk_i = \mathbf{T}_i \pmod{s} & \text{short basis} \end{array} \right. \end{aligned}$

- A signature:
 - ► compute short \mathbf{e}_i s.t. $\mathbf{A}_i \mathbf{e}_i = H(m) \pmod{q}$ (\mathbf{T}_i) ► $\forall j \neq i$ compute \mathbf{e}_j s.t. $\mathbf{A}_j \mathbf{e}_j = H(m) \pmod{q}$ "pseudo-signature" ► Encrypt each \mathbf{e}_i variant of [Regev2009] ► a proof Π disjunction of [MicciancioVadhan03]

Secure under LWE (anonymity) and GapSVP (traceability).

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

Ingredients:

- [Boyen2010]'s signature (standard model)
 - [GentryPeikertVaikuntanathan2008] encryption scheme
- $N = 2^{\ell}$ group members
- public matrices A_i's and B_i's (almost as before)
- each user is given a *short* basis **T**_{id} of a public lattice associated to its identity

$$\mathbf{A}_{\mathsf{id}} = \left(\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} \mathsf{id}[i]\mathbf{A}_i}\right)$$

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (1/3) :

b

► Produce $(\mathbf{x}_1 || \mathbf{x}_2)^T$ short s.t. : $\mathbf{x}_1^T \mathbf{A} + \mathbf{x}_2^T \cdot (\mathbf{A}_0 + \sum_{i=1}^{\ell} id[i] \cdot \mathbf{A}_i) = 0 \pmod{q}$

$$\bullet \text{ Encrypt } \mathbf{x}_2 \text{ as } \mathbf{c}_0 = \mathbf{B}_0 \cdot \mathbf{s}_0 + \mathbf{x}_2 \qquad \qquad (\mathbf{s}_0 \leftarrow U(\mathbb{Z}_q^n))$$

+ generate a proof π_0 : **c**₀ is close to a point in the \mathbb{Z}_q -span of **B**₀ [Lyubashevsky2012]

For all $i = 1, \ldots, \ell$ encrypt $id_i \cdot \mathbf{x}_2$ as

$$\mathbf{c}_i = \mathbf{B}_i \cdot \mathbf{s} + p \cdot \mathbf{e}_i + \mathrm{id}_i \cdot \mathbf{x}_2$$

so that
$$\begin{cases} \mathbf{c}_i \text{ and } \mathbf{c}_0 \text{ encrypt the same } \mathbf{x}_2 & (\mathrm{id}_i = 1) \\ \mathrm{or} \mathbf{c}_i \text{ encrypts } \mathbf{0} & (\mathrm{id}_i = 0) \end{cases}$$

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (2/3) :

► Generate a proof $\pi_{\text{OR},i}$ of these relations (disjunctions) [Lyubashevsky2012] for LWE + OR

▶ Generate a proof π_K of knowledge of the e_i's and id_i · x₂'s with their corresponding relation

[Lyubashevsky2012] for SIS + OR

= encode a valid Boyen's signature

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (3/3) :

What about the message ?

► interactive ZKPoK ~→ non-interactive ZKPoK via Fiat-Shamir

incorporating the message in $\pi_{\mathcal{K}}$

Final signature:

$$\boldsymbol{\Sigma} = \left(\{ \mathbf{c}_i \}_{0 \le i \le \ell}, \pi_0, \{ \pi_{\mathrm{OR}, i} \}_{1 \le i \le \ell}, \pi_K \right)$$

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To Verify :

Check the proofs

To Open :

Decrypt c₀ (→ x₂) and check whether p⁻¹c_i or p⁻¹(c_i − x₂) is close to the Z_q-span of B_i.

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To Verify :

Check the proofs

To Open :

Decrypt c₀ (→ x₂) and check whether p⁻¹c_i or p⁻¹(c_i − x₂) is close to the Z_q-span of B_i.

- Size of the signatures : $\tilde{\mathcal{O}}(\lambda \cdot \log(N))$
- Size of the key of member *i*: $\tilde{\mathcal{O}}(\lambda^2)$
- Weak anonymity under LWE
- Traceability under SIS
- We provide a variant with full anonymity

Conclusion

Anonymity-oriented signatures are useful, ex.: group signature

Lattices are convenient to design such schemes

Lattice-based group signatures

- reduce the size ?
- efficient revocation

Lattice-based cryptography

- competition with pairings on curves
- functional cryptography
- implementation
- multi-linear maps vs pairings