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Introduction

» Cryptography = design of secure protocols
confidentiality - authenticity - integrity

» Public Key Cryptography:

» Concept: Diffie & Hellman '76

> The secret is secret ~» a public key is available

sk < pk
> First realizations:
» RSA '78 factorization
> Merkle-Hellman '78 knapsack
> McEliece'78 decoding of error correction codes
> Elgamal '84 discrete logarithm over (Fg)*
> Koblitz / Miller 85 discrete logarithm over elliptic curves
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» Cryptography = design of secure protocols
confidentiality - authenticity - integrity

» Public Key Cryptography:

» Concept: Diffie & Hellman '76

> The secret is secret ~» a public key is available

sk < pk
> First realizations:
» RSA '78 factorization
> Merkle-Hellman '78 knapsack
> McEliece'78 decoding of error correction codes
> Elgamal '84 discrete logarithm over (Fg)*
> Koblitz / Miller 85 discrete logarithm over elliptic curves

Not enough any more !
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Introduction

What does secure mean 7 depends on the application
» ~~ security model for a cryptographic primitive
> ~~ proof of its (in)security

to prove = to reduce a “hard” problem P to an attack against the
scheme T1

instance Z of P

L \
20%

N\

—— solution to Z
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Introduction

Public-Key Cryptography:

BE STRONG - BE QUICK - BE FUNCTIONAL



Lattice-based Cryptography and LWE



What is a good algorithmic problem for a cryptographer 7

Few problems are actually used in cryptography.
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What is a good algorithmic problem for a cryptographer 7

Few problems are actually used in cryptography.

> Its instances must be hard to solve.
Breaking the cryptographic primitive must be hard.

» They must be easy to generate.
The cryptographic primitive must be efficient.

» They must be described shortly.

Space and communication must be low.

» The problem must be rich, flexible and expressive.
Some applications need advanced cryptographic primitives.
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Good Algorithmic Problems

4.

The three first criteria are quantifiable:

. Instances hard to solve.

1
2.
3

Instances easy to generate.

. Instances short.

Rich, flexible, expressive.
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1. Instances hard to solve.
2. Instances easy to generate.
3. Instances short.

4. Rich, flexible, expressive.

The three first criteria are quantifiable:

» Security parameter A : the best known algorithm to break the
scheme must have a cost of at least 2*.

» Underlying arithmetic algorithms have a cost of A1),

» Instances should be represented using \°() bits.
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Good Algorithmic Problems

1. Instances hard to solve.
2. Instances easy to generate.
3. Instances short.

4. Rich, flexible, expressive.

The three first criteria are quantifiable:

» Security parameter A : the best known algorithm to break the
scheme must have a cost of at least 2*.

» Underlying arithmetic algorithms have a cost of A1),
» Instances should be represented using \°() bits.

» The last criteria is less quantifiable...
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Popular Algorithmic Problems for Cryptography

» Factorisation and e-th root modulo a composite number (RSA) :

Poor balance efficiency / security
Not very riche, nor flexible, nor expressif.

» Discrete Log and Diffie-Hellman in (Z/pZ)* :
Same.
» Discrete Log and Diffie-Hellman in the group of points of an
algebraic curve :
Good balance efficiency / security (excellent in space).
Not very riche, nor flexible, nor expressif.
» Discrete Log and Diffie-Hellman in the group of points of a curve
equipped with a pairing
Poor balance efficiency / security
Richer, more flexible and expressif (e.g.. : IBE, ABE).



The Learning With Errors problem — LWE

Informally: Resolution of an overdetermined m x n linear system which is
random, noisy, and modulo a short integer g.

Find (s1, s2, 53, S4, S5) such that :

s1 4+ 22sp + 17s3 + 254 + s5 ~ 16 mod 23
3s1 + 2sp + 11s3 + 7s4 + 8ss ~ 17 mod 23
15s; + 13sp + 10s3 + s4 + 22s5 ~~ 3 mod 23
17s1 + 11sp + s3 + 10s4 + 3s5 ~ 8 mod 23
2s1 + sp + 13s3 + 654 + 255 =~ 9 mod 23
4s) + 4sp + s3 + 5sy + s5 =~ 18 mod 23

11s; + 12sp + 553 + s4 + 9s5 =~ 7 mod 23

We can have an arbitrary number of equations.

Other interpretation : decoding of a random linear code for the Euclidean distance.
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The Learning With Errors problem — LWE

Informally: Resolution of an overdetermined m x n linear system which is
random, noisy, and modulo a short integer g.

» The best known attacks are exponential in nlogg.

= Xis linear in nloggqg.

» Cost of the generation of the instance is in mnlog q.
It is often \2.

» Binary size of the instance : mnloggq.

10
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The Learning With Errors problem — LWE

Informally: Resolution of an overdetermined m x n linear system which is
random, noisy, and modulo a short integer g.

» The best known attacks are exponential in nlogg.

= Xis linear in nloggqg.

» Cost of the generation of the instance is in mnlog q.
It is often \2.

» Binary size of the instance : mnloggq.

> Very rich, flexible and expressive : encryption, identity-based encryption,

attribute-based encryption, homomorphic encryption, functional encryption, etc.
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Gaussian Distributions
Gaussian distribution of parameter s :

Dy(x) ~ s exp (— Wg) /
Vx e R ’

Ds(x) ~ % exp ( — 77?—;)

Vx €7 HitHE
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Gaussian Distributions
Gaussian distribution of parameter s :

Dy(x) ~ s exp (— Wg) /
Vx e R

D.(x) ~ Lerp (%)
Ak IS

» We know how to sample efficiently.

> Most of the values are in [—c-s,4c - s] for a constant ¢, if s is not

too small.
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The LWE pr0b|em [Regev05]

Letn>1,g>2and a€]0,1].
For all s € Zg, let us define the distribution D, 4 «(s) by :

(a,(a,s) +e), avec a <> U(Zy) et e <> Dz oq-

Computational LWE

For all s :

from an arbitrary number of samples of D, 4 .(s), recover s.

Decisional LWE
With non-negligeable probability on s <= U(Zg):

distinguish the two distributions Dy q.(s) and U(Z]*1).



LWE: matricial view

m
A , A 4 trouver
—
n
#1ry
> A = U(Zge"), R
> s« U(ZD), L T T P
aq

| 4 . < Dmeaq.

Discrete Gaussian error

Decisional variant :
determine if (A,b) is of the form above, or uniform.
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LWE: hardness

Brute Force

First variant:
> try all the possible s € Zg
» isb—A-ssmall?

= Cost = ¢".
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LWE: hardness

Brute Force

First variant:
> try all the possible s € Zg
» isb—A-ssmall?

= Cost = ¢".

Second variant:

> guess the n first errors.

» compute the corresponding s.

> isb—A-ssmall?
= Cost ~ (ag/n)".
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LWE and lattices

A lattice:
L= {inb,- DX € Z} CcCR"
i=1

If the b; are linearly independant, they
are called a basis.
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Lattices

A lattice:

E—{ix,-b,-:x,-GZ}CR"

i=1

If the b; are linearly independant, they

are called a basis.

\
N

There are infinitely many basis.

() (5 ) (5 )

det=1
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Lattices

Provide hard problems:
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Lattices
Provide hard problems:

Shortest Vector Problem (SVP.,)

Minimum :

A(L) = min(||b]| : b € L\ 0). BE

SVP,, : Given a basis of L, findbe L [ !
s.t. 0 < ||b]] < - A(L).

Best known algorithm : BKZ

Time 2¢-(n+log||B||)°™

v /

Approximation factor ~ ~ t©("/t)

Algorithm due to [SchnorrEuchner91], analysed by [HanrotPujolStehlé11].



Hardness of SVP

> SVP., : Given a basis of L, find b € L s.t.

0 < [[bll <v-A(L)
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Hardness of SVP

» SVP, : Given a basis of L, find b € L s.t.

0< bl <7 A(L)

» GapSVP,: Given a basis of L and t, answer

YESif A(L)<t and NO if A(L)>~-t

Hardness of GapSVP,

» NP-hard if v < O(l) (probabilistic reductions)
[Ajtai98,HavivRegev12]

» in NPNcoNP if v > /n  [GoldreichGoldwasserd7, AharonovRegev05]

» in P si’yzexp<n-w>

log n
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LWE : difficulty

» Decisional LWE <= Computational LWE

» Solving LWE using BKZ :
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LWE : difficulty

» Decisional LWE <= Computational LWE

» Solving LWE using BKZ :

From A and b, we wish to determine if b is an LWE sample or a
uniform vector.

Let L=L(A)={x€Z™:x"- A =0" mod q}

L is a lattice.

Its dimension is m: q-Z™ C L

Pigeonhole principle: Ai(L) < /mg"/™

If x € L\ 0 is short, then (x,b) :
> is small if b is an LWE sample because it is (x, e},
> is uniforme modulo g otherwise.

vvyVvVYyYy

= For the attack to work, we need
Ixlag<q <= x| <1/a.

20
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LWE : difficulty

» Decisional LWE <= Computational LWE

» Solving LWE using BKZ :

> (L) < Vmg"/™,
» Wewant to findx € Ls.t. 0< x| <1/a.

In time 2¢, BKZ computes x € L s.t.: ||x|| < tOm/)/mq"/™.

The optimal mis &~ /tn'9 and we get ||x| < 20(/Flogqlogt)

log t
BKZ's cost to break LWE
nlogq)

Time: (g &

log? o
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LWE : difficulty

» Decisional LWE <= Computational LWE

nlogq)

i 1 | O(Io 2 o
» Solving LWE using BKZ : ( qu) .

log? o

» Suppose that ag > 24/n and that g is prime and polynomial in n.
Then there exists a quantum polynomial reduction from GapSVP, in
dimension n to LWE, 4., with v = n/a.

[Regev05]

> There exists a classical polynomial reduction from GapSVP, in
dimension = /n to LWE, 4 o, with v = n?/a.
[BrakerskiLangloisPeikertRegevStehlé13]



Regev's encryption [regevos]

» Parameters : n,m,q € Z, a € ]0,1[.

> Keys: sk = s and pk = (A, b), with b = A s + e modg
where 's > U(Z]), (A < U(Zg™"), & < Dzgm aq.

> Encryption (M € {0,1}) : Let r «+ U({0,1}™),

™ ] ]
ul = A , V= +|q/2]- M.
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Regev's encryption [regevos]

» Parameters : n,m,q € Z, a € ]0,1[.

> Keys: sk = s and pk = (A, b), with b = A s + e modg
where 's > U(Z]), (A < U(Zg™"), & < Dzgm aq.

> Encryption (M € {0,1}) : Let r «+ U({0,1}™),

™ ] ]
ul = A , V= +|q/2]- M.

> Decryption (u,v) : Compute v — u”s mod g, because:

L ] L ]
+ +lg/2]- M-

A

A H =small + |q/2] - M

v u's

If close to 0, output 0, else, output 1.
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Correctness (probabilistic)
> sk=s andpk = (A, b), with b = A s +e modq.
> Encryption (M € {0,1}) : Let v <> U({0,1}™),
—— ——
ul = A | - +la/2] M.

T

» Decryption (u,v) : Compute v —u's mod q.
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Correctness (probabilistic)

» sk = s and pk = (A, b), with 'b

=/A s + e modgq.

» Encryption (M € {0,1}) : Let r < U({0,1}™),

ur = A

» Decryption (u,v) : Compute v —u

Why does it work?

L, ]

s v= +g/2] - M.

T

s mod g.

» We have v—u's=r"e+[g/2]-M mod q
» But [r"e| < |r|||le|| £ magq, with probability ~ 1.
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Correctness (probabilistic)
» sk =s andpk= (A, b), with b =/A s + e mod gq.

» Encryption (M € {0,1}) : Let r < U({0,1}™),

L ] L ]
ol = A | - +1a/2]- M.

» Decryption (u,v) : Compute v —u’s mod g.
Why does it work?
» We have v—u's=r"e+[g/2]-M mod q
But [r"e| < ||r|||le|]| < mag, with probability ~ 1.

v

» If M =0, then v —u”s mod q is at most of the order of mag.
We set a so that it is < q.

If M =1, then v —u's mod q is close to |g/2].

v
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A trapdoor for LWE

Let’s recall :
L(A)={xeZ™:x"- /A =0" mod g}
» It is a lattice of dimension m,
» A short basis allows to generate short vectors in L((/A ),
> An arbitrary basis does not give any information (solution to LWE).
GenBasis : sample A and S, a short basis of L(A), simultaneously.

S € Z™*™ short
We have S A = 0 mod gq.

v

v

Al = 0 (modgqg)

S allows to invert LWE

v

v

Can add constraints: ex.
BT - A =0 (with trapdoor)
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Another problem

The security of our group signature also relies on :

» Short Integer Solution (SIS)

Given A <= U(Z*"), find x € Z™ \ {0} small s.t. x" - A =0 (mod q)

L., Langlois and Stehlé. Chiffrement avancé & partir du probléme Learning With Errors. Chapitre

de I'ouvrage " Informatique Mathématique, une photographie en 2014", Presses Universitaires de
Perpignan (2014)
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Lattice-based Cryptography Toolbox

» Last tool :
Given public A € ZZ’X” andy € Z7,

there exist a (3-round) interactive protocol to prove that one knows
x small such that

xTA=y’

without revealing any information of x.

v

A

zero-knowledge proof of knowledge

25/39



Anonymity-Oriented Signatures



Cryptographic motivations

Need for authenticity and anonymity

> Anonymous credentials: anonymous use of certified attributes '@E

> Ex.: student card - name, picture, date, grade,...

~~ non-anonymous

> ldemix (Identity-Mixer) of IBM
Anonymous credential system developed at IBM Research [...] that
enables strong authentication and privacy at the same time.

selective revelation of attributes

» Traffic management (Vehicle Safety Communications project of the
U.S. Dept. of Transportation)

vehicle-based collision countermeasures

Intensive use of group signatures
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Group Signatures

Group signatures allow member of a group to anonymously
and accountably sign on behalf of this group

> [ChaumVanHeyst91]

> Involve :
> Group manager (mpk, msk) + gsk; KeyGen
> Opening authority (osk) Open
> Group members (gsk;) Sign
Verify
—— =
KeyGen
’ L
& %
Sign
Verify
| ﬂ Open @j
! ; i

signature / but who signed ?7? 28 /39



Group Signatures

Security requirements [BellareMicciancioWarinschi03] :

> Anonymity
a given signature does not leak the identity of its originator

» Traceability
no collusion of malicious users can produce a valid
signature that cannot be traced to one of them

Issues :
» security model
ex. anonymity
> efficiency
compact signatures, short keys, fast operations
» additional properties
revocation, dynamicity

29 /39



Group Signatures
Generic construction [BellareMicciancioWarinschi03] :

Ingredients :
> Signature & Encryption schemes

» non-interactive zero knowledge proof system
[FeigeLapidotShamir99] + [Sahai99] :

if trapdoor permutations exist, then any NP-relation has a such a proof

Scheme:
» Group manager produces a certificate Cert; = Signg,_(i||pk;)
» Member i :
1. o = Signy (m)
2. ¢ = Encrypty (i||pki|| Certi||o)
3. M = Proof(o valid A Cert; valid)
4. Output X = (c, M)
» Verification: check the validity of proof
» Opening authority decrypts C if I valid

30
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Group Signatures

Security of this construction :

» It is fully-anonymous if the encryption scheme and the proof are
“secure”

> It is traceable if the signature scheme and the proof are “secure”

Remarks:

> Inefficient in general
» Many constructions nevertheless follow this paradigm

» Breakthrough : [Groth06,GrothSahai2006]
Pairing-based simulation-sound NIZK Proofs without random oracles

39



Lattice-based Group Signatures



Group Signatures with Lattices

» First lattice-based construction : [GordonKatzVaikuntanathan2010]

> Main drawbacks : size of the signatures - O(N) N group members
> Ideas :

> Keys of the authority :
public parameters = {A;,B;}; s.t. A;- B,-T =0 (mod q)
tracing key = S; short basis
ski = T; (members) short basis

> A signature:

> compute short e; s.t. Aje; = H(m) (mod q) (T
> Vj # i compute ¢; s.t. Aje; = H(m) (mod q) “pseudo-signature”
> Encrypt each e; variant of [Regev2009]
> a proof I disjunction of [MicciancioVadhan03]

Secure under LWE (anonymity) and GapSVP (traceability).
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Group Signatures with Lattices

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

Ingredients:

v

[Boyen2010]'s signature (standard model)

v

[GentryPeikertVaikuntanathan2008] encryption scheme

» N = 2¢ group members
» public matrices A;'s and B;'s (almost as before)

> each user is given a short basis Tiq of a public lattice associated to
its identity

Ay = ( A, + Z?l id[/]A; >
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Group Signatures with Lattices

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (1/3) :

» Produce (x;||x2)7 short s.t. :
xiTA+x,7 - (A + 31y id[i] - Aj)) = 0 (mod q)

» Encrypt x as ¢ = Bg - sg + %2 (so <= U(Zy))
-+ generate a proof my: ¢ is close to a point in the Zg-span of By
[Lyubashevsky2012]
» Foralli=1,...,¢ encryptid; - x> as
ci=B;-s+p-e+idi-x
c; and ¢ encrypt the same x; (id; =1)
s0 that { or ¢; encrypts 0 (id; = 0)
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Group Signatures with Lattices

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (2/3) :

> Generate a proof mog,; of these relations (disjunctions)
[Lyubashevsky2012] for LWE + OR

» Generate a proof mk of knowledge of the e;'s and id; - x»'s with their
corresponding relation
[Lyubashevsky2012] for SIS 4+ OR

= encode a valid Boyen's signature
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Group Signatures with Lattices

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (3/3) :

What about the message ?

» interactive ZKPoK ~~ non-interactive ZKPoK via Fiat-Shamir

incorporating the message in mx

_
—_—

——
_

» Final signature:
Y= ({Ci}ogige,WO, {WOR,i}1§i§e,7TK>

37/39



Group Signatures with Lattices

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To Verify :
» Check the proofs

To Open :

» Decrypt ¢y (~ x2) and check whether p~1c; or p~1(c; — x2) is close
to the Zg-span of B;.
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Group Signatures with Lattices

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To Verify :
» Check the proofs

To Open :

» Decrypt ¢y (~ x2) and check whether p~1c; or p~1(c; — x2) is close
to the Zg-span of B;.

Size of the signatures : O(A- log(N))
Size of the key of member i: O(\?)
Weak anonymity under LWE
Traceability under SIS

We provide a variant with full anonymity

vV vVv.v. v Y
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Conclusion

» Anonymity-oriented signatures are useful, ex.: group signature

> Lattices are convenient to design such schemes

» Lattice-based group signatures

» reduce the size ?
» efficient revocation

» Lattice-based cryptography

v vy vy

competition with pairings on curves
functional cryptography
implementation

multi-linear maps vs pairings
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