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Introduction
I Cryptography = design of secure protocols

confidentiality - authenticity - integrity

I Public Key Cryptography:

I Concept: Diffie & Hellman ’76

I The secret is secret  a public key is available

sk ←→ pk

I First realizations:
I RSA ’78 factorization
I Merkle-Hellman ’78 knapsack
I McEliece’78 decoding of error correction codes
I Elgamal ’84 discrete logarithm over (Fq)?

I Koblitz / Miller ’85 discrete logarithm over elliptic curves

Not enough any more !

3 / 39



Introduction
I Cryptography = design of secure protocols

confidentiality - authenticity - integrity

I Public Key Cryptography:

I Concept: Diffie & Hellman ’76

I The secret is secret  a public key is available

sk ←→ pk

I First realizations:
I RSA ’78 factorization
I Merkle-Hellman ’78 knapsack
I McEliece’78 decoding of error correction codes
I Elgamal ’84 discrete logarithm over (Fq)?

I Koblitz / Miller ’85 discrete logarithm over elliptic curves

Not enough any more !

3 / 39



Introduction

What does secure mean ? depends on the application

I  security model for a cryptographic primitive

I  proof of its (in)security

to prove = to reduce a “hard” problem P to an attack against the
scheme Π

AΠ

solution to I

instance I of P
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Introduction

Public-Key Cryptography:

Protocols

I e-cash

I e-voting

I anonymous access in
the cloud

Cryptographic Primitives
I encryption

I signatures

Algorithmics
I hardness of arithmetic

problems

I efficient operations

be strong - be quick - be functional
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Lattice-based Cryptography and LWE
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What is a good algorithmic problem for a cryptographer ?

Few problems are actually used in cryptography.

I Its instances must be hard to solve.
Breaking the cryptographic primitive must be hard.

I They must be easy to generate.
The cryptographic primitive must be efficient.

I They must be described shortly.
Space and communication must be low.

I The problem must be rich, flexible and expressive.
Some applications need advanced cryptographic primitives.
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Good Algorithmic Problems

1. Instances hard to solve.

2. Instances easy to generate.

3. Instances short.

4. Rich, flexible, expressive.

The three first criteria are quantifiable:

I Security parameter λ : the best known algorithm to break the
scheme must have a cost of at least 2λ.

I Underlying arithmetic algorithms have a cost of λO(1).

I Instances should be represented using λO(1) bits.

I The last criteria is less quantifiable...

8 / 39



Good Algorithmic Problems

1. Instances hard to solve.

2. Instances easy to generate.

3. Instances short.

4. Rich, flexible, expressive.

The three first criteria are quantifiable:

I Security parameter λ : the best known algorithm to break the
scheme must have a cost of at least 2λ.

I Underlying arithmetic algorithms have a cost of λO(1).

I Instances should be represented using λO(1) bits.

I The last criteria is less quantifiable...

8 / 39



Good Algorithmic Problems

1. Instances hard to solve.

2. Instances easy to generate.

3. Instances short.

4. Rich, flexible, expressive.

The three first criteria are quantifiable:

I Security parameter λ : the best known algorithm to break the
scheme must have a cost of at least 2λ.

I Underlying arithmetic algorithms have a cost of λO(1).

I Instances should be represented using λO(1) bits.

I The last criteria is less quantifiable...

8 / 39



Popular Algorithmic Problems for Cryptography
I Factorisation and e-th root modulo a composite number (RSA) :

Poor balance efficiency / security
Not very riche, nor flexible, nor expressif.

I Discrete Log and Diffie-Hellman in (Z/pZ)∗ :

Same.

I Discrete Log and Diffie-Hellman in the group of points of an
algebraic curve :

Good balance efficiency / security (excellent in space).
Not very riche, nor flexible, nor expressif.

I Discrete Log and Diffie-Hellman in the group of points of a curve
equipped with a pairing :

Poor balance efficiency / security

Richer, more flexible and expressif (e.g.. : IBE, ABE).
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The Learning With Errors problem – LWE

Informally: Resolution of an overdetermined m × n linear system which is
random, noisy, and modulo a short integer q.

Find (s1, s2, s3, s4, s5) such that :

s1 + 22s2 + 17s3 + 2s4 + s5 ≈ 16 mod 23

3s1 + 2s2 + 11s3 + 7s4 + 8s5 ≈ 17 mod 23

15s1 + 13s2 + 10s3 + s4 + 22s5 ≈ 3 mod 23

17s1 + 11s2 + s3 + 10s4 + 3s5 ≈ 8 mod 23

2s1 + s2 + 13s3 + 6s4 + 2s5 ≈ 9 mod 23

4s1 + 4s2 + s3 + 5s4 + s5 ≈ 18 mod 23

11s1 + 12s2 + 5s3 + s4 + 9s5 ≈ 7 mod 23

We can have an arbitrary number of equations.

Other interpretation : decoding of a random linear code for the Euclidean distance.

I The best known attacks are exponential in n log q.

⇒ λ is linear in n log q.

I Cost of the generation of the instance is in mn log q.
It is often λ2.

I Binary size of the instance : mn log q.

I Very rich, flexible and expressive : encryption, identity-based encryption,

attribute-based encryption, homomorphic encryption, functional encryption, etc.
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Gaussian Distributions

Gaussian distribution of parameter s :∣∣∣∣ Ds(x) ∼ 1
s exp

(
− π x2

s2

)
∀x ∈ R

Discrete Gaussian Distribution of support Z and of parameter s :∣∣∣∣ Ds(x) ∼ 1
s exp

(
− π x2

s2

)
∀x ∈ Z
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Gaussian Distributions

Gaussian distribution of parameter s :∣∣∣∣ Ds(x) ∼ 1
s exp

(
− π x2

s2

)
∀x ∈ R

Discrete Gaussian Distribution of support Z and of parameter s :∣∣∣∣ Ds(x) ∼ 1
s exp

(
− π x2

s2

)
∀x ∈ Z

I We know how to sample efficiently.

I Most of the values are in [−c · s,+c · s] for a constant c , if s is not
too small.
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The LWE problem [Regev05]

Let n ≥ 1, q ≥ 2 and α ∈ ]0, 1[.
For all s ∈ Zn

q, let us define the distribution Dn,q,α(s) by :

(a, 〈a, s〉+ e) , avec a←↩ U(Zn
q) et e ←↩ DZ,αq.

Computational LWE
For all s :

from an arbitrary number of samples of Dn,q,α(s), recover s.

Decisional LWE
With non-negligeable probability on s←↩ U(Zn

q):

distinguish the two distributions Dn,q,α(s) and U(Zn+1
q ).
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LWE: matricial view

,
trouver

s

A A
s

+ e

m

n

I A ←↩ U(Zm×n
q ),

I s ←↩ U(Zn
q),

I e ←↩ DZm,αq.
αq

Discrete Gaussian error

Decisional variant :
determine if (A,b) is of the form above, or uniform.
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LWE: hardness

Brute Force

First variant:

I try all the possible s ∈ Zn
q

I is b− A · s small ?

⇒ Cost ≈ qn.

Second variant:

I guess the n first errors.

I compute the corresponding s.

I is b− A · s small?

⇒ Cost ≈ (αq
√
n)n.
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LWE and lattices

A lattice:

L =

{
n∑

i=1

xi bi : xi ∈ Z

}
⊂ Rn

If the bi are linearly independant, they
are called a basis.
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Lattices

A lattice:

L =

{
n∑

i=1

xi bi : xi ∈ Z

}
⊂ Rn

If the bi are linearly independant, they
are called a basis.

There are infinitely many basis.(
4 −3
2 4

)
·
(
−4 −3
−1 −1

)
︸ ︷︷ ︸

det=1

=

(
−13 −9
−12 −10

)
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Lattices
Provide hard problems:

Shortest Vector Problem (SVPγ)

Minimum :
λ(L) = min(‖b‖ : b ∈ L \ 0).

SVPγ : Given a basis of L, find b ∈ L
s.t. 0 < ‖b‖ ≤ γ · λ(L).

Best known algorithm : BKZ

Time 2t · (n + log ‖B‖)O(1)

⇓
Approximation factor γ ≈ tO(n/t)

Algorithm due to [SchnorrEuchner91], analysed by [HanrotPujolStehlé11].
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Hardness of SVP

I SVPγ : Given a basis of L, find b ∈ L s.t.

0 < ‖b‖ ≤ γ · λ(L)

I GapSVPγ : Given a basis of L and t, answer

YES if λ(L) ≤ t and NO if λ(L) > γ · t

Hardness of GapSVPγ

I NP-hard if γ ≤ O(1) (probabilistic reductions)

[Ajtai98,HavivRegev12]

I in NP∩coNP if γ ≥
√
n [GoldreichGoldwasser97,AharonovRegev05]

I in P si γ ≥ exp
(
n · log log n

log n

)
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LWE : difficulty

I Decisional LWE ⇐⇒ Computational LWE

I Solving LWE using BKZ :
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LWE : difficulty

I Decisional LWE ⇐⇒ Computational LWE

I Solving LWE using BKZ :

From A and b, we wish to determine if b is an LWE sample or a
uniform vector.

Let L = L( A ) = {x ∈ Zm : xT · A = 0T mod q}

I L is a lattice.
I Its dimension is m: q · Zm ⊂ L
I Pigeonhole principle: λ1(L) ≤

√
mqn/m

I If x ∈ L \ 0 is short, then 〈x, b〉 :
I is small if b is an LWE sample because it is 〈x, e〉,
I is uniforme modulo q otherwise.

⇒ For the attack to work, we need

‖x‖αq ≤ q ⇐⇒ ‖x‖ ≤ 1/α.
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LWE : difficulty

I Decisional LWE ⇐⇒ Computational LWE

I Solving LWE using BKZ :

I λ1(L) ≤
√
mqn/m.

I We want to find x ∈ L s.t. 0 < ‖x‖ ≤ 1/α.

In time 2t , BKZ computes x ∈ L s.t.: ‖x‖ ≤ tO(m/t)
√
mqn/m.

The optimal m is ≈
√

tn log q
log t and we get ‖x‖ ≤ 2O(

√
n
t log q log t).

BKZ’s cost to break LWE

Time:
(

n log q
log2 α

)O( n log q

log2 α
)

.
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LWE : difficulty

I Decisional LWE ⇐⇒ Computational LWE

I Solving LWE using BKZ :
(

n log q
log2 α

)O( n log q

log2 α
)

I Suppose that αq ≥ 2
√
n and that q is prime and polynomial in n.

Then there exists a quantum polynomial reduction from GapSVPγ in
dimension n to LWEn,q,α, with γ ≈ n/α.

[Regev05]

I There exists a classical polynomial reduction from GapSVPγ in
dimension ≈

√
n to LWEn,q,α, with γ ≈ n2/α.

[BrakerskiLangloisPeikertRegevStehlé13]
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Regev’s encryption [Regev05]

I Parameters : n,m, q ∈ Z, α ∈ ]0, 1[.

I Keys : sk = s and pk = ( A , b ), with b = A s + e mod q

where s ←↩ U(Zn
q), A ←↩ U(Zm×n

q ), e ←↩ DZm,αq .

I Encryption (M ∈ {0, 1}) : Let r ←↩ U({0, 1}m),

, v =uT =

rT

A
rT

b +bq/2e .M.

I Decryption (u, v) : Compute v − uT s mod q, because:

rT

A
s

+ e +bq/2e .M−

rT

A
s

= small + bq/2e .M

︸ ︷︷ ︸
v

︸ ︷︷ ︸
uT s

If close to 0, output 0, else, output 1.
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Correctness (probabilistic)
I sk = s and pk = ( A , b ), with b = A s + e mod q.

I Encryption (M ∈ {0, 1}) : Let r ←↩ U({0, 1}m),

, v =uT =

rT

A
rT

b +bq/2e .M.

I Decryption (u, v) : Compute v − uT s mod q.

Why does it work?

I We have v − uT s = rT e + bq/2e .M mod q

I But |rT e| ≤ ‖r‖‖e‖ ≤ mαq, with probability ≈ 1.

I If M = 0, then v − uT s mod q is at most of the order of mαq.
We set α so that it is � q.

I If M = 1, then v − uT s mod q is close to bq/2e.
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A trapdoor for LWE

Let’s recall :

L( A ) = {x ∈ Zm : xT · A = 0T mod q}

I It is a lattice of dimension m,

I A short basis allows to generate short vectors in L( A ),

I An arbitrary basis does not give any information (solution to LWE).

GenBasis : sample A and S, a short basis of L(A), simultaneously.

I S ∈ Zm×m short

I We have S A = 0 mod q.

I S allows to invert LWE

I Can add constraints: ex.
BT · A = 0 (with trapdoor)

S A = 0m

m n

(mod q)

23 / 39



Another problem

The security of our group signature also relies on :

I Short Integer Solution (SIS)

Given A←↩ U(Zm×n
q ), find x ∈ Zm \ {0} small s.t. xT · A = 0 (mod q)

L., Langlois and Stehlé. Chiffrement avancé à partir du problème Learning With Errors. Chapitre

de l’ouvrage ”Informatique Mathématique, une photographie en 2014”, Presses Universitaires de

Perpignan (2014)
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Lattice-based Cryptography Toolbox

I Last tool :

Given public A ∈ Zm×n
q and y ∈ Zn

q,

there exist a (3-round) interactive protocol to prove that one knows
x small such that

xT A = yT

without revealing any information of x.

zero-knowledge proof of knowledge

25 / 39



Anonymity-Oriented Signatures
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Cryptographic motivations
Need for authenticity and anonymity

I Anonymous credentials: anonymous use of certified attributes

I Ex.: student card - name, picture, date, grade,...

 non-anonymous

I Idemix (Identity-Mixer) of IBM
Anonymous credential system developed at IBM Research [...] that
enables strong authentication and privacy at the same time.

selective revelation of attributes

I Traffic management (Vehicle Safety Communications project of the
U.S. Dept. of Transportation)

vehicle-based collision countermeasures

Intensive use of group signatures

27 / 39



Group Signatures

Group signatures allow member of a group to anonymously
and accountably sign on behalf of this group

I [ChaumVanHeyst91]

I Involve :
I Group manager (mpk,msk) + gski KeyGen
I Opening authority (osk) Open
I Group members (gski ) Sign

Verify

Sign

Open

KeyGen

ID

Verify

signature
√
but who signed ?? 28 / 39



Group Signatures

Security requirements [BellareMicciancioWarinschi03] :

I Anonymity
a given signature does not leak the identity of its originator

I Traceability
no collusion of malicious users can produce a valid

signature that cannot be traced to one of them

Issues :

I security model
ex. anonymity

I efficiency
compact signatures, short keys, fast operations

I additional properties
revocation, dynamicity

29 / 39



Group Signatures

Generic construction [BellareMicciancioWarinschi03] :

Ingredients :

I Signature & Encryption schemes

I non-interactive zero knowledge proof system
[FeigeLapidotShamir99] + [Sahai99] :

if trapdoor permutations exist, then any NP-relation has a such a proof

Scheme:

I Group manager produces a certificate Certi = Signsks
(i ||pki )

I Member i :

1. σ = Signsk i
(m)

2. c = Encryptpko
(i ||pki ||Certi ||σ)

3. Π = Proof(σ valid ∧ Certi valid)
4. Output Σ = (c,Π)

I Verification: check the validity of proof

I Opening authority decrypts C if Π valid

30 / 39



Group Signatures

Security of this construction :

I It is fully-anonymous if the encryption scheme and the proof are
“secure”

I It is traceable if the signature scheme and the proof are “secure”

Remarks:

I Inefficient in general

I Many constructions nevertheless follow this paradigm

I Breakthrough : [Groth06,GrothSahai2006]
Pairing-based simulation-sound NIZK Proofs without random oracles
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Lattice-based Group Signatures
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Group Signatures with Lattices
I First lattice-based construction : [GordonKatzVaikuntanathan2010]

I Main drawbacks : size of the signatures - O(N) N group members

I Ideas :

I Keys of the authority : public parameters = {Ai ,Bi}i s.t. Ai · BT
i = 0 (mod q)

tracing key = Si short basis
ski = Ti (members) short basis

I A signature:

I compute short ei s.t. Ai ei = H(m) (mod q) (Ti )
I ∀j 6= i compute ej s.t. Aj ej = H(m) (mod q) “pseudo-signature”
I Encrypt each ei variant of [Regev2009]
I a proof Π disjunction of [MicciancioVadhan03]

Secure under LWE (anonymity) and GapSVP (traceability).
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Group Signatures with Lattices

A new compact construction based on lattices [L.LangloisLibertStehlé2013]

Ingredients:

I [Boyen2010]’s signature (standard model)

I [GentryPeikertVaikuntanathan2008] encryption scheme

I N = 2` group members

I public matrices Ai ’s and Bi ’s (almost as before)

I each user is given a short basis Tid of a public lattice associated to
its identity

Aid =

(
A

A0 +
∑`

i=1 id[i ]Ai

)
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Group Signatures with Lattices
A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (1/3) :

I Produce (x1||x2)T short s.t. :

x1
T A + x2

T · (A0 +
∑`

i=1 id[i ] · Ai ) = 0 (mod q)

I Encrypt x2 as c0 = B0 · s0 + x2 (s0 ←↩ U(Zn
q))

+ generate a proof π0: c0 is close to a point in the Zq-span of B0

[Lyubashevsky2012]

I For all i = 1, . . . , ` encrypt idi · x2 as

ci = Bi · s + p · ei + idi · x2

so that

{
ci and c0 encrypt the same x2 (idi = 1)
or ci encrypts 0 (idi = 0)
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Group Signatures with Lattices
A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (2/3) :

I Generate a proof πOR,i of these relations (disjunctions)
[Lyubashevsky2012] for LWE + OR

I Generate a proof πK of knowledge of the ei ’s and idi · x2’s with their
corresponding relation

[Lyubashevsky2012] for SIS + OR

= encode a valid Boyen’s signature
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Group Signatures with Lattices
A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To sign (3/3) :

What about the message ?

I interactive ZKPoK  non-interactive ZKPoK via Fiat-Shamir

incorporating the message in πK

 

I Final signature:

Σ =
(
{ci}0≤i≤`, π0, {πOR,i}1≤i≤`, πK

)
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Group Signatures with Lattices
A new compact construction based on lattices [L.LangloisLibertStehlé2013]

To Verify :

I Check the proofs

To Open :

I Decrypt c0 ( x2) and check whether p−1ci or p−1(ci − x2) is close
to the Zq-span of Bi .

I Size of the signatures : Õ(λ· log(N))

I Size of the key of member i : Õ(λ2)

I Weak anonymity under LWE

I Traceability under SIS

I We provide a variant with full anonymity
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Conclusion

I Anonymity-oriented signatures are useful, ex.: group signature

I Lattices are convenient to design such schemes

I Lattice-based group signatures

I reduce the size ?
I efficient revocation

I Lattice-based cryptography

I competition with pairings on curves
I functional cryptography
I implementation
I multi-linear maps vs pairings
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