Power Permutations, Three-Valued Weil Sums, and Helleseth's Conjecture

> Daniel J. Katz Department of Mathematics California State University, Northridge

Yet Another Conference on Cryptography Porquerolles, France 11 June 2014

Power Permutations

- ► p prime
- ▶ q = p^e
- \mathbb{F}_q finite field of order q
- d a positive integer with gcd(d, q 1) = 1
- $x \mapsto x^d$ is a permutation of \mathbb{F}_q

Example:
$$q = 5^1$$
, $d = 3$
 $0 \mapsto 0^3 = 0$
 $1 \mapsto 1^3 = 1$
 $2 \mapsto 2^3 = 3$
 $3 \mapsto 3^3 = 2$
 $4 \mapsto 4^3 = 4$

p-Ary Functions

- $\mathbb{F}_q = \mathbb{F}_{p^e}$ finite field of characteristic p
- gcd(d, q-1) = 1
- Tr: $\mathbb{F}_q \to \mathbb{F}_p$ absolute trace:

$$Tr(x) = x + x^{p} + \dots + x^{p^{e-1}}$$

$$\Rightarrow x \mapsto Tr(x^{d}) \text{ maps from } \mathbb{F}_{q} \text{ to } \mathbb{F}_{p}$$

$$\text{regarding } \mathbb{F}_{q} = \mathbb{F}_{p^{e}} \text{ as vector space } \mathbb{F}_{p}^{e}$$

$$\text{makes } x \mapsto Tr(x^{d}) \text{ a } p\text{-ary function on } \mathbb{F}_{p}^{e}$$

E.g.,
$$\mathbb{F}_{5^2} = \mathbb{F}_5 \oplus \mathbb{F}_5 \alpha$$
, $\alpha^2 + \alpha + 2 = 0$, $\binom{u}{v} = u + v\alpha$, $x \mapsto \operatorname{Tr}(x^7)$

$$\begin{cases} \binom{0}{0}, \binom{1}{2}, \binom{2}{4}, \binom{3}{1}, \binom{4}{3} \\ \end{pmatrix} \mapsto 0$$

$$\begin{cases} \binom{0}{3}, \binom{2}{0}, \binom{2}{2}, \binom{2}{3}, \binom{4}{2} \\ \end{pmatrix} \mapsto 1$$

$$\begin{cases} \binom{0}{4}, \binom{1}{0}, \binom{1}{1}, \binom{1}{4}, \binom{2}{1} \\ \end{pmatrix} \mapsto 2$$

$$\begin{cases} \binom{0}{1}, \binom{4}{0}, \binom{4}{4}, \binom{4}{1}, \binom{3}{4} \\ \end{pmatrix} \mapsto 3$$

$$\begin{cases} \binom{0}{2}, \binom{3}{0}, \binom{3}{3}, \binom{3}{2}, \binom{1}{3} \\ \end{pmatrix} \mapsto 4$$

Question of Nonlinearity

- $\mathbb{F}_q = \mathbb{F}_{p^e}$ finite field of characteristic p, $\mathsf{Tr} \colon \mathbb{F}_q \to \mathbb{F}_p$
- gcd(d, q-1) = 1
- $x \mapsto \operatorname{Tr}(x^d)$ a *p*-ary function
- How nonlinear is $x \mapsto Tr(x^d)$?
- Compare with \mathbb{F}_p -linear functionals of \mathbb{F}_q these are $\phi_a(x) = \text{Tr}(ax)$ for $a \in \mathbb{F}_a$ $\mathbb{F}_{5^2} = \mathbb{F}_5(\alpha), \ \alpha^2 + \alpha + 2 = 0, \ \binom{u}{v} = u + v\alpha, \ x \mapsto \operatorname{Tr}((1 + 4\alpha)x)$ $\left\{ \begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2 \end{pmatrix}, \begin{pmatrix} 3\\3 \end{pmatrix}, \begin{pmatrix} 4\\4 \end{pmatrix} \right\} \mapsto 0$ $\left\{\binom{2}{0},\binom{3}{1},\binom{4}{2},\binom{0}{3},\binom{1}{4}\right\}\mapsto 1$ $\left\{ \begin{pmatrix} 4\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\3 \end{pmatrix}, \begin{pmatrix} 3\\4 \end{pmatrix} \right\} \mapsto 2$ $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix} \right\} \mapsto 3 \\ \left\{ \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \mapsto 4$

Comparison

How to compare $x \mapsto Tr(x^7)$ $\left\{ \begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\1 \end{pmatrix}, \begin{pmatrix} 4\\3 \end{pmatrix} \right\} \mapsto 0$ $\left\{ {\binom{0}{3}}, {\binom{2}{0}}, {\binom{2}{2}}, {\binom{2}{3}}, {\binom{4}{2}} \right\} \mapsto 1$ $\left\{ \begin{pmatrix} 0\\4 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\4 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right\} \mapsto 2$ $\left\{ \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 4\\0 \end{pmatrix}, \begin{pmatrix} 4\\4 \end{pmatrix}, \begin{pmatrix} 4\\1 \end{pmatrix}, \begin{pmatrix} 3\\4 \end{pmatrix} \right\} \mapsto 3$ $\left\{ \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 3\\0 \end{pmatrix}, \begin{pmatrix} 3\\3 \end{pmatrix}, \begin{pmatrix} 3\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix} \right\} \mapsto 4$ with $x \mapsto \text{Tr}((1+4\alpha)x)$ $\left\{ \begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2 \end{pmatrix}, \begin{pmatrix} 3\\3 \end{pmatrix}, \begin{pmatrix} 4\\4 \end{pmatrix} \right\} \mapsto 0$ $\left\{ \begin{pmatrix} 2\\0 \end{pmatrix}, \begin{pmatrix} 3\\1 \end{pmatrix}, \begin{pmatrix} 4\\2 \end{pmatrix}, \begin{pmatrix} 0\\3 \end{pmatrix}, \begin{pmatrix} 1\\4 \end{pmatrix} \right\} \mapsto 1$ $\left\{\binom{4}{0},\binom{0}{1},\binom{1}{2},\binom{2}{3},\binom{3}{4}\right\}\mapsto 2$ $\left\{\binom{1}{0},\binom{2}{1},\binom{3}{2},\binom{4}{3},\binom{0}{4}\right\}\mapsto 3$ $\left\{ \binom{3}{0}, \binom{4}{1}, \binom{0}{2}, \binom{1}{3}, \binom{2}{4} \right\} \mapsto 4$

Method of Comparison

▶ binary functions
$$f, g: \mathbb{F}_{2^e} \to \mathbb{F}_2$$

count # of agreements - # of disagreements
correlation = $\sum_{x \in \mathbb{F}_{2^e}} (-1)^{f(x)-g(x)}$
note: -1 is the primitive 2nd root of unity
▶ *p*-ary functions $f, g: \mathbb{F}_{p^e} \to \mathbb{F}_p$
 $\zeta_p = e^{2\pi i/p}$
correlation = $\sum_{x \in \mathbb{F}_{p^e}} \zeta_p^{f(x)-g(x)}$
 $\mathbb{F}_{25}, \alpha^2 + \alpha + 2 = 0, f(x) = \operatorname{Tr}(x^7), g(x) = \operatorname{Tr}((1+4\alpha)x)$
 $\sum_{x \in \mathbb{F}_{25}} \zeta_5^{\operatorname{Tr}(x^7) - \operatorname{Tr}((1+4\alpha)x)} = 7 \cdot 1 + 7\zeta_5 + 2\zeta_5^2 + 2\zeta_5^3 + 7\zeta_5^4$
 $= \frac{5\sqrt{5}+5}{2}$
 ≈ 8.090

Walsh Transform

 $\blacktriangleright \ \mathbb{F}_q = \mathbb{F}_{p^e} \text{ finite field of characteristic } p, \ \mathsf{Tr} \colon \mathbb{F}_q \to \mathbb{F}_p$

- gcd(d, q-1) = 1
- comparing $x \mapsto \operatorname{Tr}(x^d)$ to $x \mapsto \operatorname{Tr}(ax)$ for each $a \in \mathbb{F}_q$

•
$$\zeta_{\rho} = e^{2\pi i/\rho}$$

$$egin{aligned} \mathcal{W}_{q,d}(\mathbf{a}) &= \sum_{x\in \mathbb{F}_q} \zeta_p^{\mathsf{Tr}(x^d)-\mathsf{Tr}(\mathbf{a}x)} \ &= \sum_{x\in \mathbb{F}_q} \zeta_p^{\mathsf{Tr}(x^d-\mathbf{a}x)} \end{aligned}$$

is the Walsh transform of $x \mapsto Tr(x^d)$

Weil Sums

- $\mathbb{F}_q = \mathbb{F}_{p^e}$ finite field of characteristic p, $\mathsf{Tr} \colon \mathbb{F}_q \to \mathbb{F}_p$
- gcd(d, q-1) = 1
- comparing $x \mapsto \operatorname{Tr}(x^d)$ to $x \mapsto \operatorname{Tr}(ax)$ for each $a \in \mathbb{F}_q$
- $\zeta_p = e^{2\pi i/p}$

 $\psi(x) = \zeta_p^{\mathsf{Tr}(x)}$, the canonical additive character of \mathbb{F}_q into \mathbb{C}

$$egin{aligned} \mathcal{W}_{q,d}(a) &= \sum_{x\in \mathbb{F}_q} \zeta_{
ho}^{\operatorname{Tr}(x^d-ax)} \ &= \sum_{x\in \mathbb{F}_q} \psi(x^d-ax) \end{aligned}$$

is a character sum with a polynomial argument (a Weil sum) ours is a Weil sum of a binomial

Equivalent Sums

One could consider any sum

$$\sum_{x\in\mathbb{F}_q}\psi(bx^m+cx^n)$$

with gcd(m, q-1) = gcd(n, q-1) = 1

Reparameterize with $y = (b^{1/m}x)^n$ to get

$$\sum_{y\in\mathbb{F}_q}\psi(y^{m/n}+cb^{-n/m}y)=W_{q,m/n}(cb^{-n/m})$$

Value at 0

$$W_{q,d}(\mathsf{a}) = \sum_{\mathsf{x} \in \mathbb{F}_q} \psi(\mathsf{x}^d - \mathsf{a}\mathsf{x})$$

If a = 0, then

$$egin{aligned} & W_{q,d}(0) = \sum_{x\in \mathbb{F}_q} \psi(x^d) \ &= \sum_{y\in \mathbb{F}_q} \psi(y) \ &= 0 \end{aligned}$$

so $W_{q,d}(0) = 0$ trivially

Spectra

$$W_{q,d}(a) = \sum_{x \in \mathbb{F}_q} \psi(x^d - ax)$$

Fix q and d and investigate the spectrum of values $W_{q,d}(a)$ as a runs through \mathbb{F}_q^* , from which one readily obtains:

- Cryptography: Walsh spectrum, measuring nonlinearity of the power permutation $x \mapsto x^d$,
- ► Sequence Design: Cross-correlation spectrum for a pair of p-ary m-sequences of length q − 1, where one is the decimation of the other by d,
- Coding Theory: Weight distribution for the dual of cyclic code with two zeroes α, α^d [α primitive in F_q, d ≡ 1 (mod p − 1)],
- ► Finite Geometry: Sizes of hyperplane sections of certain constructions in PG(e 1, 2) [for p = 2].

Trivial Bound and Weil Bound

$$W_{q,d}(a) = \sum_{x \in \mathbb{F}_q} \psi(x^d - ax)$$

Trivial bound: summing q elements on the unit circle in \mathbb{C} , so

 $|W_{q,d}(a)| \leq q$

Weil or Weil-Carlitz-Uchiyama bound for generic d

$$|W_{q,d}(a)| \leq (d-1)\sqrt{q}$$

becomes trivial for $d \ge 1 + \sqrt{q}$

Example Spectrum

- $\mathbb{F}_{25} = \mathbb{F}_5 \oplus \mathbb{F}_5 \alpha$, $\alpha^2 + \alpha + 2 = 0$, $\binom{u}{v} = u + v\alpha$
- linear functionals: $x \mapsto Tr(ax)$ for $a \in \mathbb{F}_{25}$
- ▶ Now compare $x \mapsto Tr(x^7)$ with all \mathbb{F}_5 -linear functionals of \mathbb{F}_{25}

$a\in \mathbb{F}_{25}$	$W_{q,d}(a) = \sum_{x \in \mathbb{F}_{25}} \zeta_5^{\operatorname{Tr}(x^7 - ax)}$
$(\overset{0}{_{0}}), (\overset{0}{_{2}}), (\overset{0}{_{1}}), (\overset{0}{_{3}}), (\overset{0}{_{4}}), (\overset{1}{_{1}}), (\overset{3}{_{3}}), (\overset{2}{_{2}}), (\overset{4}{_{4}})$	0
$\binom{1}{2}, \binom{2}{0}, \binom{3}{0}, \binom{4}{3}$	5
$\binom{2}{4}, \binom{3}{1}$	—5
$\binom{1}{4}, \binom{2}{1}$	$rac{5+\sqrt{5}}{2}pprox 8.090$
$\binom{3}{4}, \binom{4}{1}$	$rac{5-5\sqrt{5}}{2}pprox -3.090$
$\binom{2}{3}, \binom{4}{2}$	$\frac{-5+5\sqrt{5}}{2}\approx 3.090$
$\binom{1}{3}, \binom{3}{2}$	$rac{-5-\sqrt{5}}{2}pprox -8.090$
$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$rac{15+5\sqrt{5}}{2}pprox 13.090$
$\binom{4}{0}$	$rac{15-5\sqrt{5}}{2}pprox 1.910$

Initial Observations

all values are algebraic integers

all values are real

$$\overline{W_{q,d}(a)} = \overline{\sum_{x \in \mathbb{F}_q} \zeta_p^{\mathsf{Tr}(x^d - ax)}} = \sum_{x \in \mathbb{F}_q} \zeta_p^{-\mathsf{Tr}(x^d - ax)}$$
$$= \sum_{x \in \mathbb{F}_q} \zeta_p^{\mathsf{Tr}((-x)^d - a(-x))} = W_{q,d}(a)$$

 $(\gcd(d, q-1) = 1 \text{ makes } d \text{ odd when } p \text{ is odd})$

Galois conjugates always appear equally often

 $\sigma\in {\sf Gal}(\mathbb{Q}(\zeta_{
ho})/\mathbb{Q})$ has form $\sigma(\zeta_{
ho})=\zeta_{
ho}^{j}$ with ${\sf gcd}(j,
ho)=1$

$$\sigma(W_{q,d}(a)) = \sigma\left(\sum_{x \in \mathbb{F}_q} \zeta_p^{\mathsf{Tr}(x^d - ax)}\right) = \sum_{x \in \mathbb{F}_q} \zeta_p^{j\,\mathsf{Tr}(x^d - ax)}$$
$$= \sum_{x \in \mathbb{F}_q} \zeta_p^{\mathsf{Tr}((j^{1/d}x)^d - aj^{1-1/d}(j^{1/d}x))} = W_{q,d}(j^{1-1/d}a)$$

Degenerate d Values

$$W_{q,d}(a) = \sum_{x \in \mathbb{F}_q} \psi(x^d - ax)$$

If $d \equiv p^k \pmod{q-1}$, then

 $\operatorname{Tr}(x^d) = \operatorname{Tr}(x)$, so that $\psi(x^d) = \psi(x)$, and so

$$egin{aligned} \mathcal{W}_{q,d}(a) &= \sum_{x\in \mathbb{F}_q} \psi((1-a)x) \ &= egin{cases} q & ext{if } a = 1, \ 0 & ext{otherwise.} \end{aligned}$$

We say that *d* is degenerate:

 $W_{q,d}(a)$ is essentially a Weil sum of a monomial and takes at most two values as *a* runs through \mathbb{F}_{a}^{*} .

Nondegenerate Weil Sums are at Least Three-Valued

For the Weil sum

$$W_{q,d}(a) = \sum_{x \in \mathbb{F}_q} \psi(x^d - ax),$$

we say that $W_{q,d}$ is *v*-valued if

$$\left|\{W_{q,d}(a):a\in\mathbb{F}_q^*\}\right|=v.$$

Last slide: $W_{q,d}$ is at most two-valued if d is degenerate (i.e., $d \equiv p^k \pmod{q-1}$ for some k).

On the other hand, if d is nondegenerate, then $W_{q,d}$ is at least three-valued (Helleseth, 1976, using power moments, algebraic number theory)

Our example with q = 25, d = 7: Weil sum $W_{25,7}$ is nine-valued.

Number of Values Taken

Big Question: When is $W_{q,d}$ exactly three-valued? (if ever)

2-adic valuation, $v_2(a)$ is the largest k such that $2^k \mid a$

e > 2 and 0 < i < e for all e, i on table

q	d		Values of $W_{q,d}$
$q = 2^e$	$d=2^i+1,$	$v_2(i) \geq v_2(e)$	0, $\pm \sqrt{2^{\gcd(e,i)}q}$
$q = p^e$, p odd	$d = (p^{2i} + 1)/2$,	$v_2(i) \geq v_2(e)$	0, $\pm \sqrt{p^{\gcd(e,i)}q}$
$q = 2^e$	$d = 2^{2i} - 2^i + 1$,	$v_2(i) \geq v_2(e)$	0, $\pm \sqrt{2^{\gcd(e,i)}q}$
$q = p^e$, p odd	$d=p^{2i}-p^i+1,$	$v_2(i) \geq v_2(e)$	0, $\pm \sqrt{p^{\gcd(e,i)}q}$
$q = 2^e$, $v_2(e) = 1$	$d = 2^{e/2} + 2^{(e+2)/4} + 1$		0, $\pm 2\sqrt{q}$
$q=2^e$, $v_2(e)=1$	$d = 2^{(e+2)/4} + 3$		0, $\pm 2\sqrt{q}$
$q = 2^e$, e odd	$d = 2^{(e-1)}$	$^{/2} + 3$	0, $\pm\sqrt{2q}$
$q=3^e$, e odd	$d = 2 \cdot 3^{(e-1)}$	$^{1)/2} + 1$	0, $\pm\sqrt{3q}$
$q=2^e$, e odd	$d = 2^{2i} + 2^i - 1,$	e 4 <i>i</i> + 1	0, $\pm \sqrt{2q}$
$q=3^e$, e odd	$d = \frac{3^{e+1}-1}{3^i+1} + \frac{3^e-1}{2},$	$2i \mid e+1$	0, $\pm\sqrt{3q}$

Thanks to

- Kasami (1966), Kasami-Lin-Peterson (1967), Gold(1968)
- Trachtenberg (1970), Helleseth (1971, 1976)
- Welch, Kasami (1971)
- Trachtenberg (1970), Helleseth (1971, 1976)
- Cusick-Dobbertin (1996)
- Cusick-Dobbertin (1996)
- Canteaut-Charpin-Dobbertin (1999, 2000), Hollmann-Xiang (2001)
- Dobbertin-Helleseth-Kumar-Martinsen (2001)
- Hollmann-Xiang (2001)
- Ding-Gao-Zhou (2013)

General Observations

Concerning the $W_{q,d}$ values:

- 0 always present
- other two values are $\pm A$ for some A
- ▶ all values in Z

Concerning the degree *e* of the field $\mathbb{F}_q = \mathbb{F}_{p^e}$ over \mathbb{F}_p :

• e can be anything, except that it is never a power of 2

2-adic valuation, $v_2(a)$ is the largest k such that $2^k \mid a$

e > 2 and 0 < i < e for all e, i on table

q	d		Values of $W_{q,d}$
$q = 2^e$	$d=2^i+1,$	$v_2(i) \geq v_2(e)$	0, $\pm \sqrt{2^{\gcd(e,i)}q}$
$q=p^{e}$, p odd	$d = (p^{2i} + 1)/2$,	$v_2(i) \geq v_2(e)$	0, $\pm \sqrt{p^{\gcd(e,i)}q}$

Conjecture (Helleseth, 1976)

If $q = p^{2^k}$ for some k, then $W_{q,d}$ is not three-valued.

Assuming $q = 2^{2^k}$ for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996) If $W_{q,d}$ is three-valued, then the values are not of the form $0, \pm A$. method: McEliece/Stickelberger and tricky additive combinatorics

Conjecture (Helleseth, 1976)

If $q = p^{2^k}$ for some k, then $W_{q,d}$ is not three-valued.

Assuming $q = 2^{2^k}$ for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996) If $W_{q,d}$ is three-valued, then the values are not of the form $0, \pm A$.

Other Interesting Partial Results:

- Calderbank-Blokhuis (unpublished): if d ≡ −1, −2, −4, −8 (mod 15), and W_{q,d} takes the value 0, then W_{q,d} is not three-valued (computer assisted)
- McGuire (2002): if W_{q,d} is three-valued with one value 0, the cyclic code with zeroes α, α^d has minimum distance 3
- ► Charpin (2004): conjecture is true in the case where d is a power of 2 modulo √q 1
- ► Langevin (2007), ÇakÇak-Langevin (2010): conjecture is true for q = 2^{2²}, 2^{2³}, 2^{2⁴}, 2^{2⁵} (computer experiments)

Conjecture (Helleseth, 1976) If $q = p^{2^k}$ for some k, then $W_{q,d}$ is not three-valued.

Assuming $q = 2^{2^k}$ for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996) If $W_{q,d}$ is three-valued, then the values are not of the form $0, \pm A$.

Theorem (Feng, 2012)

If $W_{q,d}$ is three-valued, then none of the values is 0. method: group rings, archimedean and *p*-adic bounds

Conjecture (Helleseth, 1976) If $q = p^{2^k}$ for some k, then $W_{q,d}$ is not three-valued.

Assuming $q = 2^{2^k}$ for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996) If $W_{q,d}$ is three-valued, then the values are not of the form $0, \pm A$.

Theorem (Feng, 2012)

If $W_{q,d}$ is three-valued, then none of the values is 0.

Theorem (K., 2012)

If $W_{q,d}$ is three-valued, then one of the values is 0.

Corollary (K., 2012)

Helleseth's Conjecture is true in characteristic p = 2.

The Full Result

The full result works for any q (not just $q = 2^{2^k}$).

Theorem (K., 2012)

For any q, if $W_{q,d}$ is three-valued, then all three values are in \mathbb{Z} , and one of those values is 0.

method: Galois theory, algebraic number theory, archimedean and *p*-adic bounds

Progress for three-valued Weil sums $W_{q,d}$

Concerning the $W_{q,d}$ values:

- 0 always present proved
- other two values are $\pm A$ for some A
- all values in \mathbb{Z} proved

Concerning the degree e of the field $\mathbb{F}_q = \mathbb{F}_{p^e}$ over \mathbb{F}_p

• *e* can be anything, except that it is never a power of 2

proved for p = 2

A Key Fact in Feng's Argument

Feng uses power moments in his proof:

$$\sum_{a\in \mathbb{F}_q^*} W_{q,d}(a) = q$$

 $\sum_{a\in \mathbb{F}_q^*} W_{q,d}(a)^2 = q^2$
 $\sum_{a\in \mathbb{F}_q^*} W_{q,d}(a)^3 = q^2 |V|$

where V is the set of roots of $(1-x)^d + x^d - 1$ in \mathbb{F}_q .

He relies critically on the fact that |V| is divisible by 2.

The problem: |V| is not divisible by p in general.

Example: if p = 5, q = 25, and d = 13, then |V| = 7, so $p \nmid |V|$.

However, when p = 3, we find that |V| is always divisible by 3.

3-Divisibility of |V|

Lemma

Let V be the set of roots of $f(x) = (1 - x)^d + x^d - 1$ in \mathbb{F}_q . If char $(\mathbb{F}_q) = 3$, then |V(f)| is divisible by 3.

The following involutions act on roots:

The group $\Gamma = <\sigma, \tau > \cong S_3$

Generic orbits are of size 6, and the only smaller orbits are $\{0, 1\}$ and $\{2\}$.

Thus $|V| \equiv 3 \pmod{6}$.

Consequence

This enables us to adapt the techniques of Feng to characteristic 3 to obtain:

Theorem

If $q = 3^{2^k}$ for some k, and $W_{q,d}$ is three-valued, then none of the values is 0.

Combine with our theorem

Theorem (K., 2012)

For any q, if $W_{q,d}$ is three-valued, then all the values are in \mathbb{Z} and one of the values is 0.

To obtain Helleseth's Conjecture in characteristic 3:

Theorem (K.) If $q = 3^{2^k}$ for some k, then $W_{q,d}$ is not three-valued. Symmetric Sums (joint with Y. Aubry and P. Langevin)

A three-valued $W_{q,d}$ with values -A, 0, A is called symmetric

Theorem (Aubry-K.-Langevin, 2013) If $q = p^{2^k}$ for some k, then $W_{q,d}$ is not symmetric three-valued.

The specialization to p = 2 is the result of Calderbank, McGuire, Poonen, Rubinstein (1996)

Their proof uses $\mathsf{McEliece}/\mathsf{Stickelberger}$ and a tricky calculation in additive number theory

Our proof uses Fourier analysis and the Davenport-Hasse relation

Preferred Weil Sums (joint with Y. Aubry and P. Langevin)

A symmetric three-valued $W_{q,d}$ with values -A, 0, A (with A > 0) must have

- $A \ge \sqrt{pq}$ if *e* is odd
- $A \ge p\sqrt{q}$ if *e* is even

When these are equalities, $W_{q,d}$ is called preferred

Theorem (Aubry-K.-Langevin, 2013)

If $q = p^{4k}$ for some k, then $W_{q,d}$ is not preferred three-valued.

The specialization to p = 2 is the conjecture of Sarwate-Pursley (1980), proved by Calderbank-McGuire (1995)

We again eliminate the use of McEliece/Stickelberger

Niho Exponents (joint with Y. Aubry and P. Langevin)

Theorem (Aubry-K.-Langevin, 2013) Let $q = p^{2k}$ for some k. If d is degenerate over $\mathbb{F}_{\sqrt{q}}$, i.e., if d is a power of p modulo $p^k - 1$, then $W_{q,d}$ is not three-valued.

Such a d is called a Niho exponent for q

The p = 2 case is the result of Charpin (2004)

Methods that work for p = 2 don't work in odd characteristic

Open Questions

Conjecture

If $W_{q,d}$ is three-valued, then it is symmetric, that is, the two nonzero values are A and -A for some A.

Conjecture (Helleseth, 1976) If $q = p^{2^k}$ for some k, then $W_{q,d}$ is not three-valued. (only settled for p = 2, 3)

The first conjecture implies the second, in view of the Aubry-K.-Langevin proof that $W_{q,d}$ cannot be symmetric for $q = p^{2^k}$.

Conjecture (Helleseth, 1976)

If q>2 and $d\equiv 1 \pmod{p-1}$, then $W_{q,d}(a)=0$ for some $a\in \mathbb{F}_q^*.$