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Power Permutations

> p prime

> q=p°

» Iy finite field of order g

» d a positive integer with ged(d, g —1) =1

» x — x9 is a permutation of Fq

Example: ¢ =5, d =3

0—03=0
1—13=1
2—23=3
3—+33=2

443 =4

N



p-Ary Functions

v

Fgq = IFpe finite field of characteristic p

ged(d,g—1)=1

Tr: Fq — Fp, absolute trace:
Tr(x) =x+xP 4+ -4+ xP

x + Tr(x9) maps from I, to I,

v

v

e—1

v

regarding IFq = [Fpe as vector space F,¢
makes x — Tr(x9) a p-ary function on F,®
Eg. Fse =Fs ®Fsa, a?+a+2=0, () = u+ v, x = Tr(x")
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Question of Nonlinearity

v

Fgq = Fpe finite field of characteristic p, Tr: Fq — F,
ged(d, g —1) =1

x + Tr(x9) a p-ary function

v

v

v

How nonlinear is x ~ Tr(x9)?
» Compare with [F,-linear functionals of g

these are ¢,(x) = Tr(ax) for a € Fq

Fs = Fs(a), o +a+2=0, () = u+ v, x = Tr((1 + 4a)x)

(0): (1) (3) 5



Comparison
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Method of Comparison

> binary functions f, g: Foe — >

count # of agreements - # of disagreements

correlation = ZX€F2Q(—1)f(X)_g(X)

note: —1 is the primitive 2nd root of unity
» p-ary functions f,g: Fpe — Iy

Cp — e27ri/p

. )
correlation = > i p(X) g(x)
p

Fas, o +a+2 =0, f(x) = Tr(x"), g(x) = Tr((1 + 4a)x)

S GO TTOHAD) _ 74 4 765 4262 + 263 + 7
x€Fos
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Walsh Transform

v

Fgq = IFpe finite field of characteristic p, Tr: Fq — F,
ged(d,g—1) =1

» comparing x — Tr(x?) to x — Tr(ax) for each a €
Cp = e2mi/p

v

v

Z C —Tr(ax)

x€Fq

_ Z CTr(x —ax)

x€lFq

is the Walsh transform of x — Tr(x9)



Weil Sums

» [y = Fpe finite field of characteristic p, Tr: Fq — F,
» gcd(d,g—1)=1

» comparing x — Tr(x?) to x — Tr(ax) for each a € F,
> CP = ezﬂi/P

P(x) = ;r(x), the canonical additive character of Fg into C

r Xd— X
Woa(a) = Y ¢

x€lFq

=D vx?—ax)

x€Fq
is a character sum with a polynomial argument (a Weil sum)

ours is a Weil sum of a binomial



Equivalent Sums

One could consider any sum

> p(bx™ + ox")

x€Fq
with gcd(m, g — 1) = ged(n,g—1) =1

Reparameterize with y = (b/™x)" to get

S U™+ b My) = Wy a(ch ")
y€Fq



Value at 0

Woa(a) = ) v(x? = ax)

x€Fq

If a=0, then

Wo.a(0) = > v(x9)

x€Fq

y€F,

so W, 4(0) = 0 trivially
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Spectra

Z P(x9 — ax)
xe€lfq

Fix g and d and investigate the spectrum of values W, 4(a)
as a runs through F?, from which one readily obtains:

» Cryptography: Walsh spectrum, measuring nonlinearity of the

power permutation x — x9,

» Sequence Design: Cross-correlation spectrum for a pair of
p-ary m-sequences of length g — 1, where one is the
decimation of the other by d,

» Coding Theory: Weight distribution for the dual of cyclic code

with two zeroes a, a? [ primitive in Fy, d =1 (mod p —1)],

» Finite Geometry: Sizes of hyperplane sections of certain
constructions in PG(e — 1, 2) [for p = 2].



Trivial Bound and Weil Bound

Woa(a) = 3~ w(x? — ax)

x€lFg

Trivial bound: summing g elements on the unit circle in C, so
[Wa.d(a)l < q
Weil or Weil-Carlitz-Uchiyama bound for generic d
[Wa.a(a)l < (d —1)vq

becomes trivial for d > 1+ ,/q
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Example Spectrum

> o5 =5 ® Fsa, Oz2+04+2:0, (5) =u-+va
» linear functionals: x — Tr(ax) for a € Fos
» Now compare x — Tr(x”) with all Fs-linear functionals of Fas

Tr(x"—
a € Fys Wq,d(a) — ZXEF25 5I'(X ax)

(). ). (). 3
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Initial Observations
all values are algebraic integers

all values are real

Z <'.Tr(xd—ax ZC Tr(x9—ax)

x€Fq x€Fq
r((—x)?—a(—x
= > G T = W (a)
x€lFq

(ged(d, g — 1) = 1 makes d odd when p is odd)

Galois conjugates always appear equally often

o € Gal(Q((p)/Q) has form o(Cp) = ¢ with ged(j, p) = 1

O'( Z C.TF(X —ax) _ Z C{)Tr(xdfax)

x€Fq x€Fq
1/dy)d _aj1=1/d(j1/d 1
— Z Tf((J ajt =Mt ex)) _ W, (i1 1/4a)

x€lFg

14



Degenerate d Values

Woa(a) = 3~ w(x? — ax)

x€lFg
If d = p* (mod g — 1), then
Tr(x9) = Tr(x), so that ¥(x9) = 9(x), and so

Waa(a) = D 9((1 - a)x)

x€lFq
_Jq ifa=1,
" 10 otherwise.
We say that d is degenerate:

Wy.4(a) is essentially a Weil sum of a monomial

and takes at most two values as a runs through Fg.
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Nondegenerate Weil Sums are at Least Three-Valued

For the Weil sum

Woa(a) = > v(x? - ax),

x€Fq

we say that W, 4 is v-valued if
{Waala): 2 Fy| = v.

Last slide: Wy 4 is at most two-valued if d is degenerate (i.e.,
d = p¥ (mod g — 1) for some k).

On the other hand, if d is nondegenerate, then W, 4 is at least
three-valued (Helleseth, 1976, using power moments, algebraic
number theory)

Our example with g = 25, d = 7: Weil sum Was 7 is nine-valued.
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Number of Values Taken

Big Question: When is W, 4 exactly three-valued?

(if ever)

2-adic valuation, v»(a) is the largest k such that 2% | a

e>2and 0 < i< eforall e ion table

q d | Values of W4
qg=2° d=2"+1, va(i) > wa(e) | 0, 1/2ecd(eilg
q = p°, p odd d=(p* +1)/2 va(i) > wva(e) | 0, &4/ pecdleig
q=2° d=2% 241,  w(i)>w(e) | 0, £/28dciqg
g = p¢, p odd d=p* —p +1, va(i) > wa(e) | 0, &4/ pecdleig
g=2° w(e)=1 d =282 4 2(eF2)/% 1 1 0, £2,/9

=2° we)=1 d=2(+2)/4 1.3 0, £2,/g
q=2° eodd d=26"1/243 0, +£v/2q
g =3¢ eodd d=2-30"1/2 41 0, +/3q
g =2° eodd d=27"42"-1, e|4i+1 0, £1/2q
g =3°, e odd d=3071+32 2ife+1 0, +v/39
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Kasami (1966), Kasami-Lin-Peterson (1967), Gold(1968)
Trachtenberg (1970), Helleseth (1971, 1976)

Welch, Kasami (1971)

Trachtenberg (1970), Helleseth (1971, 1976)
Cusick-Dobbertin (1996)

Cusick-Dobbertin (1996)

Canteaut-Charpin-Dobbertin (1999, 2000), Hollmann-Xiang
(2001)

Dobbertin-Helleseth-Kumar-Martinsen (2001)
Hollmann-Xiang (2001)
Ding-Gao-Zhou (2013)



General Observations

Concerning the W, 4 values:
» 0 always present
» other two values are +A for some A

» all values in Z

Concerning the degree e of the field F; = Fje over Fp:

> e can be anything, except that it is never a power of 2

2-adic valuation, va(a) is the largest k such that 2% | a

e>2and 0 < i< eforall e ion table

q | d | Values of W4
q=2° d=2"+1, vo(i) > va(e) | 0, £4/2e<d(eig
g=pc, podd | d=(p* +1)/2, w(i)>w(e) |0, &y/pscdleiq



Helleseth's Conjecture

Conjecture (Helleseth, 1976)
If g = p?* for some k, then W, 4 is not three-valued.

Assuming g = 22 for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)
If Wy.q is three-valued, then the values are not of the form 0, £A.
method: McEliece/Stickelberger and tricky additive combinatorics
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Helleseth's Conjecture

Conjecture (Helleseth, 1976)
If g = p?* for some k, then W, 4 is not three-valued.

Assuming g = 22 for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)
If W4 is three-valued, then the values are not of the form 0, £A.

Other Interesting Partial Results:

» Calderbank-Blokhuis (unpublished): if d = -1, -2, —4, -8
(mod 15), and W, 4 takes the value 0, then W, 4 is not
three-valued (computer assisted)

» McGuire (2002): if Wy g is three-valued with one value 0, the
cyclic code with zeroes o, @ has minimum distance 3

» Charpin (2004): conjecture is true in the case where d is a
power of 2 modulo \/q — 1

» Langevin (2007), CakCak-Langevin (2010): conjecture is true

for g = 2%, 2%, 2% 22 (computer experiments)
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Helleseth's Conjecture

Conjecture (Helleseth, 1976)
If g = p?* for some k, then W, 4 is not three-valued.

Assuming g = 22 for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)

If W4 is three-valued, then the values are not of the form 0, £A.

Theorem (Feng, 2012)
If Wy g is three-valued, then none of the values is 0.

method: group rings, archimedean and p-adic bounds
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Helleseth's Conjecture
Conjecture (Helleseth, 1976)

If g = p?* for some k, then W, 4 is not three-valued.

Assuming g = 22 for the rest of this slide...

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)
If W4 is three-valued, then the values are not of the form 0, £A.

Theorem (Feng, 2012)

If Wy g is three-valued, then none of the values is 0.

Theorem (K., 2012)
If W, g is three-valued, then one of the values is 0.

Corollary (K., 2012)
Helleseth's Conjecture is true in characteristic p = 2.
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The Full Result

The full result works for any g (not just g = 22).
Theorem (K., 2012)

For any g, if Wy 4 is three-valued, then all three values are in Z,
and one of those values is 0.

method: Galois theory, algebraic number theory, archimedean and
p-adic bounds

Progress for three-valued Weil sums W 4

Concerning the W, 4 values:
» 0 always present  proved
» other two values are +A for some A
» all values in Z proved

Concerning the degree e of the field F; = [Fpe over F,
> e can be anything, except that it is never a power of 2
proved for p = 2
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A Key Fact in Feng's Argument

Feng uses power moments in his proof:

Z Wqd(a) = q
aEIE‘;;
> Wea(a)’ = ¢
ackFy
> Woa(a)* = |V
aeIE‘;;

where V is the set of roots of (1 — x)? +x9 — 1 in F,.

He relies critically on the fact that |V/| is divisible by 2.

The problem: | V| is not divisible by p in general.

Example: if p=5, g =25, and d =13, then |V|=7,s0 p{|V].

However, when p = 3, we find that |V/| is always divisible by 3.



3-Divisibility of | V|

Lemma
Let V be the set of roots of f(x) = (1 — x)¥ + x? — 1 in Fy. If
char(Fg) = 3, then |V/(f)| is divisible by 3.

The following involutions act on roots:
o(x)=1-x (on V)
1
T(x) = = (on V . {0})
X

The group I =< 0,7 > 53

Generic orbits are of size 6, and the only smaller orbits are {0,1}
and {2}.

Thus |V| =3 (mod 6).



Consequence

This enables us to adapt the techniques of Feng to characteristic 3
to obtain:

Theorem
If g = 32 for some k, and Wy 4 is three-valued, then none of the
values is Q.

Combine with our theorem

Theorem (K., 2012)

For any q, if Wq 4 is three-valued, then all the values are in Z and
one of the values is 0.

To obtain Helleseth's Conjecture in characteristic 3:

Theorem (K.)

If g = 3% for some k, then W, 4 is not three-valued.
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Symmetric Sums (joint with Y. Aubry and P. Langevin)

A three-valued W, 4 with values —A, 0, A is called symmetric

Theorem (Aubry-K.-Langevin, 2013)

If g = p** for some k, then Wq 4 is not symmetric three-valued.

The specialization to p = 2 is the result of Calderbank, McGuire,
Poonen, Rubinstein (1996)

Their proof uses McEliece/Stickelberger and a tricky calculation in
additive number theory

Our proof uses Fourier analysis and the Davenport-Hasse relation
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Preferred Weil Sums (joint with Y. Aubry and P. Langevin)

A symmetric three-valued W, 4 with values —A,0, A (with A > 0)
must have

» A> ,/pqif eis odd
» A>p,/qif eis even
When these are equalities, W 4 is called preferred

Theorem (Aubry-K.-Langevin, 2013)

If g = p** for some k, then We.d is not preferred three-valued.

The specialization to p = 2 is the conjecture of Sarwate-Pursley
(1980), proved by Calderbank-McGuire (1995)

We again eliminate the use of McEliece/Stickelberger
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Niho Exponents (joint with Y. Aubry and P. Langevin)

Theorem (Aubry-K.-Langevin, 2013)

Let g = p?* for some k. If d is degenerate over Fpg ie,ifdisa
power of p modulo p¥ — 1, then We.d is not three-valued.

Such a d is called a Niho exponent for g
The p = 2 case is the result of Charpin (2004)

Methods that work for p = 2 don’t work in odd characteristic
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Open Questions

Conjecture

If Wy g4 is three-valued, then it is symmetric, that is, the two
nonzero values are A and —A for some A.

Conjecture (Helleseth, 1976)

If g = p2k for some k, then W, 4 is not three-valued.
(only settled for p = 2,3)

The first conjecture implies the second, in view of the
Aubry-K.-Langevin proof that W, 4 cannot be symmetric for

k
q=p>.

Conjecture (Helleseth, 1976)

Ifg>2andd=1 (mod p—1), then W, 4(a) = 0 for some
ERSH
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