Power Permutations, Three-Valued Weil Sums, and Helleseth's Conjecture

Daniel J. Katz
Department of Mathematics
California State University, Northridge

Yet Another Conference on Cryptography
Porquerolles, France
11 June 2014

Power Permutations

- p prime
- $q=p^{e}$
- \mathbb{F}_{q} finite field of order q
- d a positive integer with $\operatorname{gcd}(d, q-1)=1$
- $x \mapsto x^{d}$ is a permutation of \mathbb{F}_{q}

Example: $q=5^{1}, d=3$

$$
\begin{aligned}
& 0 \mapsto 0^{3}=0 \\
& 1 \mapsto 1^{3}=1 \\
& 2 \mapsto 2^{3}=3 \\
& 3 \mapsto 3^{3}=2 \\
& 4 \mapsto 4^{3}=4
\end{aligned}
$$

p-Ary Functions

- $\mathbb{F}_{q}=\mathbb{F}_{p^{e}}$ finite field of characteristic p
- $\operatorname{gcd}(d, q-1)=1$
- $\operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ absolute trace:

$$
\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{e-1}}
$$

- $x \mapsto \operatorname{Tr}\left(x^{d}\right)$ maps from \mathbb{F}_{q} to \mathbb{F}_{p}
regarding $\mathbb{F}_{q}=\mathbb{F}_{p^{e}}$ as vector space $\mathbb{F}_{p}{ }^{e}$
makes $x \mapsto \operatorname{Tr}\left(x^{d}\right)$ a p-ary function on $\mathbb{F}_{p}{ }^{e}$
E.g., $\mathbb{F}_{5^{2}}=\mathbb{F}_{5} \oplus \mathbb{F}_{5} \alpha, \alpha^{2}+\alpha+2=0,\binom{u}{v}=u+v \alpha, x \mapsto \operatorname{Tr}\left(x^{7}\right)$

$$
\left.\begin{array}{l}
\left\{\binom{0}{0},\binom{1}{2},\binom{2}{4},\binom{3}{1},\binom{4}{3}\right\} \mapsto 0 \\
\left\{\binom{0}{3},\binom{2}{0},\binom{2}{2},\binom{2}{3},\binom{4}{2}\right\} \mapsto 1 \\
\left\{\binom{0}{4},\binom{1}{0},\binom{1}{1},\binom{1}{4},\binom{2}{1}\right\} \mapsto 2
\end{array}\right\} \text { } \begin{aligned}
& \left\{\binom{0}{1},\binom{4}{0},\binom{4}{4},\binom{4}{1},\binom{3}{4}\right\} \mapsto 3 \\
& \left\{\binom{0}{2},\binom{3}{0},\binom{3}{3},\binom{3}{2},\binom{1}{3}\right\} \mapsto 4
\end{aligned}
$$

Question of Nonlinearity

- $\mathbb{F}_{q}=\mathbb{F}_{p^{e}}$ finite field of characteristic $p, \operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$
- $\operatorname{gcd}(d, q-1)=1$
- $x \mapsto \operatorname{Tr}\left(x^{d}\right)$ a p-ary function
- How nonlinear is $x \mapsto \operatorname{Tr}\left(x^{d}\right)$?
- Compare with \mathbb{F}_{p}-linear functionals of \mathbb{F}_{q}
these are $\phi_{a}(x)=\operatorname{Tr}(a x)$ for $a \in \mathbb{F}_{q}$

$$
\begin{aligned}
\mathbb{F}_{5^{2}}= & \mathbb{F}_{5}(\alpha), \alpha^{2}+\alpha+2=0,\binom{u}{v}=u+v \alpha, x \mapsto \operatorname{Tr}((1+4 \alpha) x) \\
& \left\{\binom{0}{0},\binom{1}{1},\binom{2}{2},\binom{3}{3},\binom{4}{4}\right\} \mapsto 0 \\
& \left\{\binom{2}{0},\binom{3}{1},\binom{4}{2},\binom{0}{3},\binom{1}{4}\right\} \mapsto 1 \\
& \left\{\binom{4}{0},\binom{0}{1},\binom{1}{2},\binom{2}{3},\binom{3}{4}\right\} \mapsto 2 \\
& \left\{\binom{1}{0},\binom{2}{1},\binom{3}{2},\binom{4}{3},\binom{0}{4}\right\} \mapsto 3 \\
& \left\{\binom{3}{0},\binom{4}{1},\binom{0}{2},\binom{1}{3},\binom{2}{4}\right\} \mapsto 4
\end{aligned}
$$

Comparison

How to compare $x \mapsto \operatorname{Tr}\left(x^{7}\right)$

$$
\left.\begin{array}{l}
\left\{\binom{0}{0},\binom{1}{2},\binom{2}{4},\binom{3}{1},\binom{4}{3}\right\} \mapsto 0 \\
\left\{\binom{0}{3},\binom{2}{0},\binom{2}{2},\binom{2}{3},\binom{4}{2}\right\} \mapsto 1 \\
\left\{\binom{0}{4},\binom{1}{0},\binom{1}{1},\binom{1}{4},\binom{2}{1}\right\} \mapsto 2 \\
\left\{\binom{0}{1},\binom{4}{0},\binom{4}{4},\binom{4}{1},\binom{3}{4}\right\} \mapsto 3
\end{array}\right\} \text { } \begin{aligned}
& \text { (} \left.\left.\begin{array}{l}
0 \\
2
\end{array}\right),\binom{3}{0},\binom{3}{3},\binom{3}{2},\binom{1}{3}\right\} \mapsto 4
\end{aligned}
$$

with $x \mapsto \operatorname{Tr}((1+4 \alpha) x)$

$$
\left.\begin{array}{l}
\left\{\binom{0}{0},\binom{1}{1},\binom{2}{2},\binom{3}{3},\binom{4}{4}\right\} \mapsto 0 \\
\left\{\binom{2}{0},\binom{3}{1},\binom{4}{2},\binom{0}{3},\binom{1}{4}\right\} \mapsto 1 \\
\left\{\binom{4}{0},\binom{0}{1},\binom{1}{2},\binom{2}{3},\binom{3}{4}\right\} \mapsto 2 \\
\left\{\binom{1}{0},\binom{2}{1},\binom{3}{2},\binom{4}{3},\binom{0}{4}\right\} \mapsto 3
\end{array}\right\} \mapsto\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right),\binom{4}{1},\binom{0}{2},\left(\begin{array}{l}
1
\end{array}\right) \mapsto 4,
$$

Method of Comparison

- binary functions $f, g: \mathbb{F}_{2^{e}} \rightarrow \mathbb{F}_{2}$

> count \# of agreements - \# of disagreements

$$
\text { correlation }=\sum_{x \in \mathbb{F}_{2^{e}}}(-1)^{f(x)-g(x)}
$$

note: -1 is the primitive 2 nd root of unity

- p-ary functions $f, g: \mathbb{F}_{p^{e}} \rightarrow \mathbb{F}_{p}$

$$
\begin{aligned}
& \zeta_{p}=e^{2 \pi i / p} \\
& \text { correlation }=\sum_{x \in \mathbb{F}_{p e}} \zeta_{p}^{f(x)-g(x)}
\end{aligned}
$$

$$
\mathbb{F}_{25}, \alpha^{2}+\alpha+2=0, f(x)=\operatorname{Tr}\left(x^{7}\right), g(x)=\operatorname{Tr}((1+4 \alpha) x)
$$

$$
\sum_{x \in \mathbb{F}_{25}} \zeta_{5}^{\operatorname{Tr}\left(x^{7}\right)-\operatorname{Tr}((1+4 \alpha) x)}=7 \cdot 1+7 \zeta_{5}+2 \zeta_{5}^{2}+2 \zeta_{5}^{3}+7 \zeta_{5}^{4}
$$

$$
=\frac{5 \sqrt{5}+5}{2}
$$

$$
\approx 8.090
$$

Walsh Transform

- $\mathbb{F}_{q}=\mathbb{F}_{p^{e}}$ finite field of characteristic $p, \operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$
- $\operatorname{gcd}(d, q-1)=1$
- comparing $x \mapsto \operatorname{Tr}\left(x^{d}\right)$ to $x \mapsto \operatorname{Tr}(a x)$ for each $a \in \mathbb{F}_{q}$
- $\zeta_{p}=e^{2 \pi i / p}$

$$
\begin{aligned}
W_{q, d}(a) & =\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\operatorname{Tr}\left(x^{d}\right)-\operatorname{Tr}(a x)} \\
& =\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\operatorname{Tr}\left(x^{d}-a x\right)}
\end{aligned}
$$

is the Walsh transform of $x \mapsto \operatorname{Tr}\left(x^{d}\right)$

Weil Sums

- $\mathbb{F}_{q}=\mathbb{F}_{p^{e}}$ finite field of characteristic $p, \operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$
- $\operatorname{gcd}(d, q-1)=1$
- comparing $x \mapsto \operatorname{Tr}\left(x^{d}\right)$ to $x \mapsto \operatorname{Tr}(a x)$ for each $a \in \mathbb{F}_{q}$
- $\zeta_{p}=e^{2 \pi i / p}$
$\psi(x)=\zeta_{p}^{\operatorname{Tr}(x)}$, the canonical additive character of \mathbb{F}_{q} into \mathbb{C}

$$
\begin{aligned}
W_{q, d}(a) & =\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\operatorname{Tr}\left(x^{d}-a x\right)} \\
& =\sum_{x \in \mathbb{F}_{q}} \psi\left(x^{d}-a x\right)
\end{aligned}
$$

is a character sum with a polynomial argument (a Weil sum) ours is a Weil sum of a binomial

Equivalent Sums

One could consider any sum

$$
\sum_{x \in \mathbb{F}_{q}} \psi\left(b x^{m}+c x^{n}\right)
$$

with $\operatorname{gcd}(m, q-1)=\operatorname{gcd}(n, q-1)=1$
Reparameterize with $y=\left(b^{1 / m} x\right)^{n}$ to get

$$
\sum_{y \in \mathbb{F}_{q}} \psi\left(y^{m / n}+c b^{-n / m} y\right)=W_{q, m / n}\left(c b^{-n / m}\right)
$$

Value at 0

$$
W_{q, d}(a)=\sum_{x \in \mathbb{F}_{q}} \psi\left(x^{d}-a x\right)
$$

If $a=0$, then

$$
\begin{aligned}
W_{q, d}(0) & =\sum_{x \in \mathbb{F}_{q}} \psi\left(x^{d}\right) \\
& =\sum_{y \in \mathbb{F}_{q}} \psi(y) \\
& =0
\end{aligned}
$$

so $W_{q, d}(0)=0$ trivially

Spectra

$$
W_{q, d}(a)=\sum_{x \in \mathbb{F}_{q}} \psi\left(x^{d}-a x\right)
$$

Fix q and d and investigate the spectrum of values $W_{q, d}(a)$ as a runs through \mathbb{F}_{q}^{*}, from which one readily obtains:

- Cryptography: Walsh spectrum, measuring nonlinearity of the power permutation $x \mapsto x^{d}$,
- Sequence Design: Cross-correlation spectrum for a pair of p-ary m-sequences of length $q-1$, where one is the decimation of the other by d,
- Coding Theory: Weight distribution for the dual of cyclic code with two zeroes $\alpha, \alpha^{d}\left[\alpha\right.$ primitive in $\left.\mathbb{F}_{q}, d \equiv 1(\bmod p-1)\right]$,
- Finite Geometry: Sizes of hyperplane sections of certain constructions in $\mathrm{PG}(e-1,2)$ [for $p=2$].

Trivial Bound and Weil Bound

$$
W_{q, d}(a)=\sum_{x \in \mathbb{F}_{q}} \psi\left(x^{d}-a x\right)
$$

Trivial bound: summing q elements on the unit circle in \mathbb{C}, so

$$
\left|W_{q, d}(a)\right| \leq q
$$

Weil or Weil-Carlitz-Uchiyama bound for generic d

$$
\left|W_{q, d}(a)\right| \leq(d-1) \sqrt{q}
$$

becomes trivial for $d \geq 1+\sqrt{q}$

Example Spectrum

- $\mathbb{F}_{25}=\mathbb{F}_{5} \oplus \mathbb{F}_{5} \alpha, \alpha^{2}+\alpha+2=0,\binom{u}{v}=u+v \alpha$
- linear functionals: $x \mapsto \operatorname{Tr}(a x)$ for $a \in \mathbb{F}_{25}$
- Now compare $x \mapsto \operatorname{Tr}\left(x^{7}\right)$ with all \mathbb{F}_{5}-linear functionals of \mathbb{F}_{25}

$$
\begin{array}{cc}
a \in \mathbb{F}_{25} & W_{q, d}(a)=\sum_{x \in \mathbb{F}_{25}} \zeta_{5}^{\operatorname{Tr}\left(x^{7}-a x\right)} \\
\hline\binom{0}{0},\binom{0}{2},\binom{0}{1},\binom{0}{3},\binom{0}{4},\binom{1}{1},\binom{3}{3},\binom{2}{2},\binom{4}{4} & 0 \\
\binom{1}{2},\binom{2}{0},\binom{3}{0},\binom{4}{3} & -5 \\
\binom{2}{4},\binom{3}{1} & \frac{5+\sqrt{5}}{2} \approx 8.090 \\
\binom{1}{4},\binom{2}{1} & \frac{5-5 \sqrt{5}}{2} \approx-3.090 \\
\binom{3}{4},\binom{4}{1} & \frac{-5+5 \sqrt{5}}{2} \approx 3.090 \\
\binom{2}{3},\binom{4}{2} & \frac{-5-\sqrt{5}}{2} \approx-8.090 \\
\binom{1}{3},\binom{3}{2} & \frac{15+5 \sqrt{5}}{2} \approx 13.090 \\
\binom{1}{0} & \frac{15-5 \sqrt{5}}{2} \approx 1.910
\end{array}
$$

Initial Observations

all values are algebraic integers
all values are real

$$
\begin{aligned}
\overline{W_{q, d}(a)} & =\overline{\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\operatorname{Tr}\left(x^{d}-a x\right)}}=\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{-\operatorname{Tr}\left(x^{d}-a x\right)} \\
& =\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\operatorname{Tr}\left((-x)^{d}-a(-x)\right)}=W_{q, d}(a)
\end{aligned}
$$

$(\operatorname{gcd}(d, q-1)=1$ makes d odd when p is odd $)$
Galois conjugates always appear equally often
$\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$ has form $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{j}$ with $\operatorname{gcd}(j, p)=1$

$$
\begin{aligned}
\sigma\left(W_{q, d}(a)\right) & =\sigma\left(\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\operatorname{Tr}\left(x^{d}-a x\right)}\right)=\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{j \operatorname{Tr}\left(x^{d}-a x\right)} \\
& =\sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\operatorname{Tr}\left(\left(j^{1 / d} x\right)^{d}-a j^{1-1 / d}\left(j^{1 / d} x\right)\right)}=W_{q, d}\left(j^{1-1 / d} a\right)
\end{aligned}
$$

Degenerate d Values

$$
W_{q, d}(a)=\sum_{x \in \mathbb{F}_{q}} \psi\left(x^{d}-a x\right)
$$

If $d \equiv p^{k}(\bmod q-1)$, then

$$
\begin{aligned}
& \operatorname{Tr}\left(x^{d}\right)=\operatorname{Tr}(x) \text {, so that } \psi\left(x^{d}\right)=\psi(x) \text {, and so } \\
& W_{q, d}(a)=\sum_{x \in \mathbb{F}_{q}} \psi((1-a) x) \\
& = \begin{cases}q & \text { if } a=1, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

We say that d is degenerate:
$W_{q, d}(a)$ is essentially a Weil sum of a monomial and takes at most two values as a runs through \mathbb{F}_{q}^{*}.

Nondegenerate Weil Sums are at Least Three-Valued

For the Weil sum

$$
W_{q, d}(a)=\sum_{x \in \mathbb{F}_{q}} \psi\left(x^{d}-a x\right)
$$

we say that $W_{q, d}$ is v-valued if

$$
\left|\left\{W_{q, d}(a): a \in \mathbb{F}_{q}^{*}\right\}\right|=v .
$$

Last slide: $W_{q, d}$ is at most two-valued if d is degenerate (i.e., $d \equiv p^{k}(\bmod q-1)$ for some $\left.k\right)$.

On the other hand, if d is nondegenerate, then $W_{q, d}$ is at least three-valued (Helleseth, 1976, using power moments, algebraic number theory)

Our example with $q=25, d=7$: Weil sum $W_{25,7}$ is nine-valued.

Number of Values Taken

Big Question: When is $W_{q, d}$ exactly three-valued?
(if ever)
2-adic valuation, $v_{2}(a)$ is the largest k such that $2^{k} \mid a$
$e>2$ and $0<i<e$ for all e, i on table

q	d		Values of $W_{q, d}$
$q=2^{e}$	$d=2^{i}+1$,	$v_{2}(i) \geq v_{2}(e)$	$0, \pm \sqrt{2^{g d d}(e, i)} q$
$q=p^{e}, p$ odd	$d=\left(p^{2 i}+1\right) / 2$,	$v_{2}(i) \geq v_{2}(e)$	$0, \pm \sqrt{p^{g c d}(e, i)} q$
$q=2^{e}$	$d=2^{2 i}-2^{i}+1$,	$v_{2}(i) \geq v_{2}(e)$	$0, \pm \sqrt{2^{g c d(e, i)} q}$
$q=p^{e}, p$ odd	$d=p^{2 i}-p^{i}+1$,	$v_{2}(i) \geq v_{2}(e)$	$0, \pm \sqrt{p^{g c d}(e, i)} q$
$q=2^{e}, v_{2}(e)=1$	$d=2^{e / 2}+2^{(e+2) / 4}+1$	$0, \pm 2 \sqrt{q}$	
$q=2^{e}, v_{2}(e)=1$	$d=2^{(e+2) / 4}+3$	$0, \pm 2 \sqrt{q}$	
$q=2^{e}, e$ odd	$d=2^{(e-1) / 2}+3$	$0, \pm \sqrt{2 q}$	
$q=3^{e}, e$ odd	$d=2 \cdot 3^{(e-1) / 2}+1$	$0, \pm \sqrt{3 q}$	
$q=2^{e}, e$ odd	$d=2^{2 i}+2^{i}-1$,	$e \mid 4 i+1$	$0, \pm \sqrt{2 q}$
$q=3^{e}, e$ odd	$d=\frac{3^{e+1}-1}{3^{i}+1}+\frac{3^{e}-1}{2}$,	$2 i \mid e+1$	$0, \pm \sqrt{3 q}$

Thanks to

- Kasami (1966), Kasami-Lin-Peterson (1967), Gold(1968)
- Trachtenberg (1970), Helleseth $(1971,1976)$
- Welch, Kasami (1971)
- Trachtenberg (1970), Helleseth $(1971,1976)$
- Cusick-Dobbertin (1996)
- Cusick-Dobbertin (1996)
- Canteaut-Charpin-Dobbertin (1999, 2000), Hollmann-Xiang (2001)
- Dobbertin-Helleseth-Kumar-Martinsen (2001)
- Hollmann-Xiang (2001)
- Ding-Gao-Zhou (2013)

General Observations

Concerning the $W_{q, d}$ values:

- 0 always present
- other two values are $\pm A$ for some A
- all values in \mathbb{Z}

Concerning the degree e of the field $\mathbb{F}_{q}=\mathbb{F}_{p^{e}}$ over \mathbb{F}_{p} :

- e can be anything, except that it is never a power of 2

2-adic valuation, $v_{2}(a)$ is the largest k such that $2^{k} \mid a$

$$
e>2 \text { and } 0<i<e \text { for all } e, i \text { on table }
$$

q	d		Values of $W_{q, d}$
$q=2^{e}$	$d=2^{i}+1$,	$v_{2}(i) \geq v_{2}(e)$	$0, \pm \sqrt{2^{\operatorname{gcd}(e, i)} q}$
$q=p^{e}, p$ odd	$d=\left(p^{2 i}+1\right) / 2$,	$v_{2}(i) \geq v_{2}(e)$	$0, \pm \sqrt{p^{\operatorname{gcd}(e, i)} q}$

Helleseth's Conjecture

Conjecture (Helleseth, 1976)
If $q=p^{2^{k}}$ for some k, then $W_{q, d}$ is not three-valued.
Assuming $q=2^{2^{k}}$ for the rest of this slide...
Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)
If $W_{q, d}$ is three-valued, then the values are not of the form $0, \pm A$. method: McEliece/Stickelberger and tricky additive combinatorics

Helleseth's Conjecture

Conjecture (Helleseth, 1976)

If $q=p^{2^{k}}$ for some k, then $W_{q, d}$ is not three-valued.

$$
\text { Assuming } q=2^{2^{k}} \text { for the rest of this slide... }
$$

Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)
If $W_{q, d}$ is three-valued, then the values are not of the form $0, \pm A$.
Other Interesting Partial Results:

- Calderbank-Blokhuis (unpublished): if $d \equiv-1,-2,-4,-8$ $(\bmod 15)$, and $W_{q, d}$ takes the value 0 , then $W_{q, d}$ is not three-valued (computer assisted)
- McGuire (2002): if $W_{q, d}$ is three-valued with one value 0 , the cyclic code with zeroes α, α^{d} has minimum distance 3
- Charpin (2004): conjecture is true in the case where d is a power of 2 modulo $\sqrt{q}-1$
- Langevin (2007), ÇakÇak-Langevin (2010): conjecture is true for $q=2^{2^{2}}, 2^{2^{3}}, 2^{2^{4}}, 2^{2^{5}}$ (computer experiments)

Helleseth's Conjecture

Conjecture (Helleseth, 1976)
If $q=p^{2^{k}}$ for some k, then $W_{q, d}$ is not three-valued.
Assuming $q=2^{2^{k}}$ for the rest of this slide...
Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)
If $W_{q, d}$ is three-valued, then the values are not of the form $0, \pm A$.
Theorem (Feng, 2012)
If $W_{q, d}$ is three-valued, then none of the values is 0 . method: group rings, archimedean and p-adic bounds

Helleseth's Conjecture

Conjecture (Helleseth, 1976)
If $q=p^{2^{k}}$ for some k, then $W_{q, d}$ is not three-valued.
Assuming $q=2^{2^{k}}$ for the rest of this slide...
Theorem (Calderbank-McGuire-Poonen-Rubinstein, 1996)
If $W_{q, d}$ is three-valued, then the values are not of the form $0, \pm A$.
Theorem (Feng, 2012)
If $W_{q, d}$ is three-valued, then none of the values is 0 .
Theorem (K., 2012)
If $W_{q, d}$ is three-valued, then one of the values is 0 .
Corollary (K., 2012)
Helleseth's Conjecture is true in characteristic $p=2$.

The Full Result

The full result works for any q (not just $q=2^{2^{k}}$).
Theorem (K., 2012)
For any q, if $W_{q, d}$ is three-valued, then all three values are in \mathbb{Z}, and one of those values is 0 .
method: Galois theory, algebraic number theory, archimedean and p-adic bounds

Progress for three-valued Weil sums $W_{q, d}$
Concerning the $W_{q, d}$ values:

- 0 always present proved
- other two values are $\pm A$ for some A
- all values in \mathbb{Z} proved

Concerning the degree e of the field $\mathbb{F}_{q}=\mathbb{F}_{p^{e}}$ over \mathbb{F}_{p}

- e can be anything, except that it is never a power of 2
proved for $p=2$

A Key Fact in Feng's Argument

Feng uses power moments in his proof:

$$
\begin{aligned}
& \sum_{a \in \mathbb{F}_{q}^{*}} W_{q, d}(a)=q \\
& \sum_{a \in \mathbb{F}_{q}^{*}} W_{q, d}(a)^{2}=q^{2} \\
& \sum_{a \in \mathbb{F}_{q}^{*}} W_{q, d}(a)^{3}=q^{2}|V|
\end{aligned}
$$

where V is the set of roots of $(1-x)^{d}+x^{d}-1$ in \mathbb{F}_{q}.
He relies critically on the fact that $|V|$ is divisible by 2 .
The problem: $|V|$ is not divisible by p in general.
Example: if $p=5, q=25$, and $d=13$, then $|V|=7$, so $p \nmid|V|$.
However, when $p=3$, we find that $|V|$ is always divisible by 3 .

3-Divisibility of $|V|$

Lemma
Let V be the set of roots of $f(x)=(1-x)^{d}+x^{d}-1$ in \mathbb{F}_{q}. If $\operatorname{char}\left(\mathbb{F}_{q}\right)=3$, then $|V(f)|$ is divisible by 3 .

The following involutions act on roots:

$$
\begin{aligned}
\sigma(x)=1-x & (\text { on } V) \\
\tau(x)=\frac{1}{x} & (\text { on } V \backslash\{0\})
\end{aligned}
$$

The group $\Gamma=<\sigma, \tau>\cong S_{3}$
Generic orbits are of size 6 , and the only smaller orbits are $\{0,1\}$ and $\{2\}$.

Thus $|V| \equiv 3(\bmod 6)$.

Consequence

This enables us to adapt the techniques of Feng to characteristic 3 to obtain:

Theorem
If $q=3^{2^{k}}$ for some k, and $W_{q, d}$ is three-valued, then none of the values is 0 .

Combine with our theorem
Theorem (K., 2012)
For any q, if $W_{q, d}$ is three-valued, then all the values are in \mathbb{Z} and one of the values is 0 .

To obtain Helleseth's Conjecture in characteristic 3:
Theorem (K.)
If $q=3^{2^{k}}$ for some k, then $W_{q, d}$ is not three-valued.

Symmetric Sums (joint with Y. Aubry and P. Langevin)

A three-valued $W_{q, d}$ with values $-A, 0, A$ is called symmetric
Theorem (Aubry-K.-Langevin, 2013)
If $q=p^{2^{k}}$ for some k, then $W_{q, d}$ is not symmetric three-valued.
The specialization to $p=2$ is the result of Calderbank, McGuire, Poonen, Rubinstein (1996)

Their proof uses McEliece/Stickelberger and a tricky calculation in additive number theory

Our proof uses Fourier analysis and the Davenport-Hasse relation

Preferred Weil Sums (joint with Y. Aubry and P. Langevin)

A symmetric three-valued $W_{q, d}$ with values $-A, 0, A$ (with $A>0$) must have

- $A \geq \sqrt{p q}$ if e is odd
- $A \geq p \sqrt{q}$ if e is even

When these are equalities, $W_{q, d}$ is called preferred
Theorem (Aubry-K.-Langevin, 2013)
If $q=p^{4 k}$ for some k, then $W_{q, d}$ is not preferred three-valued.
The specialization to $p=2$ is the conjecture of Sarwate-Pursley (1980), proved by Calderbank-McGuire (1995)

We again eliminate the use of McEliece/Stickelberger

Niho Exponents (joint with Y. Aubry and P. Langevin)

Theorem (Aubry-K.-Langevin, 2013)
Let $q=p^{2 k}$ for some k. If d is degenerate over $\mathbb{F}_{\sqrt{q}}$, i.e., if d is a power of p modulo $p^{k}-1$, then $W_{q, d}$ is not three-valued.

Such a d is called a Niho exponent for q
The $p=2$ case is the result of Charpin (2004)
Methods that work for $p=2$ don't work in odd characteristic

Open Questions

Conjecture

If $W_{q, d}$ is three-valued, then it is symmetric, that is, the two nonzero values are A and $-A$ for some A.

Conjecture (Helleseth, 1976)
If $q=p^{2^{k}}$ for some k, then $W_{q, d}$ is not three-valued. (only settled for $p=2,3$)

The first conjecture implies the second, in view of the Aubry-K.-Langevin proof that $W_{q, d}$ cannot be symmetric for $q=p^{2^{k}}$.

Conjecture (Helleseth, 1976)

If $q>2$ and $d \equiv 1(\bmod p-1)$, then $W_{q, d}(a)=0$ for some $a \in \mathbb{F}_{q}^{*}$.

