## Inversion-Free Arithmetic on Elliptic Curves Through Isomorphisms





Marc Joye

## Elliptic Curve Cryptography

 Invented [independently] by Neil Koblitz and Victor Miller in 1985



Useful for key exchange, encryption and digital signature

### Definition

Given scalar k and a point **P**, compute  $k\mathbf{P} = \mathbf{P} + \mathbf{P} + \cdots + \mathbf{P}$ 

k times

**ECDLP** Given **P** and Q = kP, recover k

- no subexponential algorithms are known to solve the ECDLP (in the general case)
- smaller key sizes can be used

| Bit security |      |      |      |      |       |  |
|--------------|------|------|------|------|-------|--|
|              | 80   | 112  | 128  | 192  | 256   |  |
| ECC          | 160  | 224  | 256  | 384  | 512   |  |
| RSA          | 1024 | 2048 | 3072 | 8192 | 15360 |  |

YACC 2014 · Porquerolles, June 11, 2014

# This Talk

#### Goal

Generalization of Meloni's co-Z arithmetic on elliptic curves

- all elliptic curve models
- all scalar multiplication algorithms
- (suitable for memory-constrained devices)





## Outline



# **Elliptic Curves**

### Weierstraß equation (affine coordinates)

Let  $E: y^2 = x^3 + ax + b$  define over  $\mathbb{F}_q$  (*char*  $\neq$  2, 3) with discriminant  $\Delta = -16(4a^3 + 27b^2) \neq 0$ 





(b) Doubling: P + P = R.



$$\boldsymbol{E}(\mathbb{F}_q) = \{\boldsymbol{y}^2 = \boldsymbol{x}^3 + \boldsymbol{a}\boldsymbol{x} + \boldsymbol{b}\} \cup \{\boldsymbol{O}\}$$

■ Let  $P = (x_1, y_1)$  and  $Q = (x_2, y_2)$ ■ Group law ■ P + O = O + P = P■  $-P = (x_1, -y_1)$ ■  $P + Q = (x_3, y_3)$  where  $x_3 = \lambda^2 - x_1 - x_2, \ y_3 = (x_1 - x_3)\lambda - y_1$ with  $\lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} \text{ [addition]} \\ \frac{3x_1^2 + a}{2y_1} \text{ [doubling]} \end{cases}$ 

YACC 2014 · Porquerolles, June 11, 2014

## Jacobian Coordinates

- To avoid computing inverses in  $\mathbb{F}_q$ 
  - affine point  $(x, y) \rightarrow$  projective point (X : Y : Z) such that  $x = X/Z^2$  and  $y = Y/Z^3$

#### Weierstraß equation (projective Jacobian coordinates)

Let  $E: Y^2 = X^3 + aXZ^4 + bZ^6$  define over  $\mathbb{F}_q$  (char  $\neq 2, 3$ ) with discriminant  $\Delta = -16(4a^3 + 27b^2) \neq 0$ 

- Point at infinity  $\boldsymbol{O} = (1:1:0)$
- If  $P = (X_1 : Y_1 : Z_1) \in E$  then  $-P = (X_1 : -Y_1 : Z_1)$

- Jacobian point addition: 11M + 5S
- Jacobian point doubling:  $\frac{1M + 8S + 1c}{1}$



YACC 2014 · Porquerolles, June 11, 2014

# Co-Z Point Addition (ZADD)

- Introduced by Meloni [WAIFI 2007]
- Addition of two distinct points with the same Z-coordinate

### Co-Z point addition

Let  $P = (X_1 : Y_1 : Z)$  and  $Q = (X_2 : Y_2 : Z)$ . Then  $P + Q = (X_3 : Y_3 : Z_3)$  where

$$X_3 = D - W_1 - W_2, \ Y_3 = (Y_1 - Y_2)(W_1 - X_3) - A_1, \ Z_3 = Z(X_1 - X_2)$$

with  $A_1 = Y_1(W_1 - W_2)$ ,  $W_1 = X_1C$ ,  $W_2 = X_2C$ ,  $C = (X_1 - X_2)^2$  and  $D = (Y_1 - Y_2)^2$ 

• Cost of ZADD: 5M + 2S



Main advantage of Meloni's addition

#### Equivalent representation of **P**

Evaluation of  $\boldsymbol{R} = \text{ZADD}(\boldsymbol{P}, \boldsymbol{Q})$  yields for free

$$m{P}' = ig(X_1(X_1 - X_2)^2 : Y_1(X_1 - X_2)^3 : Z_3ig) = (W_1 : A_1 : Z_3) \sim m{P}$$

that is, Z(P') = Z(R)

- Notation:  $(\boldsymbol{R}, \boldsymbol{P'}) = \mathsf{ZADDU}(\boldsymbol{P}, \boldsymbol{Q})$
- Cost of ZADDU: 5M + 2S



YACC 2014  $\,\cdot\,$  Porquerolles, June 11, 2014

## **Classical Methods**

Algorithm 1 Left-to-right binary method Input:  $P \in E(\mathbb{F}_q)$  and  $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ Output: Q = kP1:  $R_0 \leftarrow O$ ;  $R_1 \leftarrow P$ 2: for i = n - 1 down to 0 do 3:  $R_0 \leftarrow 2R_0$ 

4: if  $(k_i = 1)$  then  $\mathbf{R}_0 \leftarrow \mathbf{R}_0 + \mathbf{R}_1$ 5: end for

6: return R<sub>0</sub>

Algorithm 2 Montgomery ladder Input:  $P \in E(\mathbb{F}_q)$  and  $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$ Output: Q = kP

1:  $R_0 \leftarrow O$ ;  $R_1 \leftarrow P$ 2: for i = n - 1 down to 0 do 3:  $b \leftarrow k_i$ ;  $R_{1-b} \leftarrow R_{1-b} + R_b$ 4:  $R_b \leftarrow 2R_b$ 5: end for 6: return  $R_0$ 



- New co-*Z* point operation
  - using caching techniques

### Conjugate co-Z point addition

From  $-\mathbf{Q} = (X_2 : -Y_2 : Z_2)$ , evaluation of  $\mathbf{R} = \text{ZADD}(\mathbf{P}, \mathbf{Q})$  allows one to get  $\mathbf{S} := \mathbf{P} - \mathbf{Q} = (\overline{X_3}, \overline{Y_3}, \overline{Z_3})$  where

$$\overline{X_3} = (Y_1 + Y_2)^2 - W_1 - W_2, \ \overline{Y_3} = (Y_1 + Y_2)(W_1 - \overline{X_3})$$

with an additional cost of 1M + 1S

- Notation: (P + Q, P Q) = ZADDC(P, Q)
- Total cost of ZADDC: <u>6M + 3S</u>

YACC 2014 · Porquerolles, June 11, 2014

## Left-to-Right Binary Ladder With co-Z Trick

Algorithm 3 Montgomery ladder with co-Z formulæ Input:  $P \in E(\mathbb{F}_q)$  and  $k = (k_{n-1}, \dots, k_0)_2 \in \mathbb{N}$  with  $k_{n-1} = 1$ Output: Q = kP

- 1:  $R_0 \leftarrow O; R_1 \leftarrow P$
- 2: for i = n 1 down to 0 do
- 3:  $b \leftarrow k_i; \mathbf{R}_{1-b} \leftarrow \mathbf{R}_{1-b} + \mathbf{R}_b$
- 4:  $\mathbf{R}_{\mathbf{b}} \leftarrow 2\mathbf{R}_{\mathbf{b}}$
- 5: **end for**
- 6: return *R*<sub>0</sub>
- Cost per bit: (6M + 3S) + (5M + 2S) = 11M + 5S

Improved version: 8M + 6S

#### N. Meloni

New point addition formulæ for ECC applications Proc. of WAIFI 2007, LNCS 4537, pp. 189-201, Springer, 2007

R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Venelli Scalar multiplication on Weierstraß elliptic curves from co-Z arithmetic

J. Cryptographic Engineering 1(2):161-176, 2011



technicolor

ιεςπηιςοια

YACC 2014 · Porquerolles, June 11, 2014

# Isomorphisms of Elliptic Curves

### Theorem (Char $\mathbb{K} \neq 2, 3$ )

Any two elliptic curves given the Weierstraß equations

$$\begin{array}{l} E: \, y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \,, \,\, and \\ E': \, y^2 + a_1' xy + a_3' y = x^3 + a_2' x^2 + a_4' x + a_6' \end{array}$$

are isomorphic over  $\mathbb{K}$  if and only if there exist  $u, r, s, t \in \mathbb{K}$ ,  $u \neq 0$ , such that the change of variables  $(x, y) \leftarrow (u^2x + r, u^3y + u^2sx + t)$ transforms E into E', and where

$$ua'_{1} = a_{1} + 2s$$

$$u^{2}a'_{2} = a_{2} - sa_{1} + 3r - s^{2}$$

$$u^{3}a'_{3} = a_{3} + ra_{1} + 2t$$

$$u^{4}a'_{4} = a_{4} - sa_{3} + 2ra_{2} - (t + rs)a_{1} + 3r^{2} - 2st$$

$$u^{6}a'_{6} = a_{6} + ra_{4} + r^{2}a_{2} + r^{3} - ta_{3} - t^{2} - rta_{1}$$

• For any  $u \neq 0$ , elliptic curve

$$E_1: y^2 = x^3 + ax + b$$

is  $\mathbb{K}$ -isomorphic to

$$E_u: y^2 = x^3 + au^4x + bu^6$$

■ Jacobian coordinates:  $x = X/Z^2$  and  $y = Y/Z^3$  $E_1: Y^2 = X^3 + aXZ^4 + bZ^6$ 

#### Observation

- A finite point  $P = (x_1, y_1) \in E_1$  is represented as  $(X_1 : Y_1 : Z_1)$  with  $X_1 = x_1 Z_1^2$  and  $Y_1 = y_1 Z_1^3$ , for any  $Z_1 \in \mathbb{K}^*$
- Point  $(X_1, Y_1)$  can be seen as a point on isomorphic elliptic curve  $E_{Z_1}$

YACC 2014 · Porquerolles, June 11, 2014

## Meloni's Technique Revisited (2/2)

- **Meloni** On a short Weierstraß curve  $E_1$ , two finite points  $P = (X_1 : Y_1 : Z)$  and  $Q = (X_2 : Y_2 : Z)$  given in Jacobian coordinates and sharing the same Z-coordinate can be added faster to get  $R = P + Q = (X_3 : Y_3 : Z_3) \in E_1$
- New interpretation Two points  $(X_1, Y_1)$  and  $(X_2, Y_2)$  given in affine coordinates on a same isomorphic curve  $E_1$  (i.e., on  $E_Z$  with Z = 1) can be added faster to get

$$ilde{m{ extsf{R}}}:=\Psi_arphi(m{ extsf{P}}+m{ extsf{Q}})$$

where  $\Psi_{\varphi}: E_1 \stackrel{\sim}{\rightarrow} E_{\varphi}, (x, y) \mapsto (\varphi^2 x, \varphi^3 y)$ 



■ Let 
$$P = (x_1, y_1)$$
 and  $Q = (x_2, y_2) \in E_1 \setminus \{O\}$  with  $P \neq \pm Q$   
Reminder: if  $x_1 \neq x_2$  then  
 $(x_1, y_1) + (x_2, y_2) = (x_3, y_3) = (\lambda^2 - x_1 - x_2, (x_1 - x_3)\lambda - y_1)$   
where  $\lambda = \frac{y_1 - y_2}{x_1 - x_2}$   
■ Define  $\varphi = x_1 - x_2$ . Then  $\tilde{R} := \Psi_{\varphi}(P + Q) = (\varphi^2 x_3, \varphi^3 y_3) \in E_{\varphi}$   
with  
 $\begin{cases} \varphi^2 x_3 = (y_1 - y_2)^2 - \varphi^2 x_1 - \varphi^2 x_2 \\ \varphi^3 y_3 = (\varphi^2 x_1 - \varphi^2 x_3)(y_1 - y_2) - \varphi^3 y_1 \end{cases}$   
■ Cost of iADD:  $4M + 2S$   
■ Cost of iADDU:  $4M + 2S$   
■ Cost of iADDU:  $4M + 2S$   
■ Cost of iADDC:  $5M + 3S$ 

YACC 2014 · Porquerolles, June 11, 2014

## **Application: Point Doubling**

• Let 
$$\boldsymbol{P} = (\boldsymbol{x}_1, \boldsymbol{y}_1) \in \boldsymbol{E}_1 \setminus \{\boldsymbol{O}\}$$
 with  $\boldsymbol{P} \neq -\boldsymbol{P}$ 

<u>Reminder</u>: if  $y_1 \neq 0$  then  $2(x_1, y_1) = (x_3, y_3) = (\lambda^2 - 2x_1, (x_1 - x_3)\lambda - y_1)$ where  $\lambda = \frac{3x_1^2 + a}{2y_1}$ 

• Define  $\varphi = 2y_1$ . Then  $\tilde{\mathbf{R}} := \Psi_{\varphi}(2\mathbf{P}) = (\varphi^2 \mathbf{x}_3, \varphi^3 \mathbf{y}_3) \in \mathbf{E}_{\varphi}$  with

$$\begin{cases} \varphi^2 x_3 = (3x_1^2 + a)^2 - 2\varphi^2 x_1 \\ \varphi^3 y_3 = (\varphi^2 x_1 - \varphi^2 x_3)(3x_1^2 + a) - \varphi^3 y_1 \end{cases}$$

Cost of iDBL: <u>1M + 5S</u>
 Cost of iDBLU: <u>1M + 5S</u>

### Inversion-Free Arithmetic Through Isomorphisms

■ Addition chain for k when computing  $\mathbf{Q} = k\mathbf{P}$ ≡  $a_0 = 1, a_1, \dots, a_\ell = k$  such that  $\forall i \ge 1, \exists u, v$  with  $1 \le u, v < i$  and  $a_i = a_u + a_v$ ■ Define  $\begin{cases} E^{(0)} = E_1 & \text{original elliptic curve} \\ E^{(i)} = E_{\vec{\Phi}_i} & \text{current elliptic curve at Step } i \\ E^{(\ell(k))} = E_{\vec{\Phi}_{\ell(k)}} & \text{final elliptic curve} \end{cases}$ ■ Then  $\mathbf{\tilde{Q}} := k((\Psi_{\vec{\varphi}_{\ell(k)}} \circ \cdots \circ \Psi_{\vec{\varphi}_i} \circ \cdots \circ \Psi_{\vec{\varphi}_i})\mathbf{P}) \in \mathbf{E}^{(\ell(k))}$   $\mathbf{P} \in \mathbf{E}^{(0)} \xrightarrow{\Psi_{\vec{\varphi}_1}} \dots \xrightarrow{\Psi_{\vec{\varphi}_{i-1}}} \mathbf{E}^{(i-1)} \xrightarrow{\Psi_{\vec{\varphi}_i}} \mathbf{E}^{(i)} \xrightarrow{\Psi_{\vec{\varphi}_{i+1}}} \dots \xrightarrow{\Psi_{\vec{\varphi}_{\ell(k)}}} \mathbf{\tilde{Q}} \in \mathbf{E}^{(\ell(k))}$  $\mathbf{Q} = k\mathbf{P} \in \mathbf{E}^{(0)} \xrightarrow{\Psi_{\vec{\Phi}_{\ell(k)}} (\Psi_{\vec{\varphi}_{\ell(k)}} \circ \cdots \circ \Psi_{\vec{\varphi}_{i+1}} \circ \Psi_{\vec{\varphi}_{i+1}}$ 

## Composition of Isomorphisms (1/2)

$$\begin{split} \bullet \quad \tilde{\boldsymbol{Q}} &= k \left( \Psi_{\vec{\Phi}_{\ell(k)}}(\boldsymbol{P}) \right) = k \left( (\Psi_{\vec{\varphi}_{\ell(k)}} \circ \cdots \circ \Psi_{\vec{\varphi}_{i}} \circ \cdots \circ \Psi_{\vec{\varphi}_{1}}) \boldsymbol{P} \right) \\ &= \Psi_{\vec{\Phi}_{\ell(k)}}(k\boldsymbol{P}) \implies \boldsymbol{Q} = \Psi_{\vec{\Phi}_{\ell(k)}}^{-1}(\boldsymbol{\tilde{Q}}) \\ \bullet \quad \Psi_{\vec{\Phi}_{\ell(k)}} \text{ is obtained iteratively} \end{split}$$

$$\Psi_{\vec{\Phi}_i} = \Psi_{\vec{\varphi}_i} \circ \Psi_{\vec{\Phi}_{i-1}}$$

with  $\Psi_{\vec{\Phi}_0} = \mathrm{Id}$ 

• ... or slightly abusing the notation – since  $\vec{\Phi}_i = \text{desc}(\Psi_{\vec{\Phi}_i})$ 

$$\vec{\Phi}_i = \vec{\varphi}_i \circ \vec{\Phi}_{i-1}$$

with 
$$ec{ extsf{P0}} = extsf{desc}( extsf{Id}) := \mathbb{1}$$



General Weierstraß elliptic curves (*char*  $\neq$  2, 3)

$$\begin{split} \Psi_{\vec{\Phi}_{i-1}} &: E^{(0)} \xrightarrow{\sim} E^{(i-1)}, \\ &(x,y) \longmapsto (U_{i-1}{}^{2}x + R_{i-1}, U_{i-1}{}^{3}y + U_{i-1}{}^{2}S_{i-1}x + T_{i-1}) \\ &\Psi_{\vec{\varphi}_{i}} : E^{(i-1)} \xrightarrow{\sim} E^{(i)}, (x,y) \longmapsto (u_{i}{}^{2}x + r_{i}, u_{i}{}^{3}y + u_{i}{}^{2}s_{i}x + t_{i}) \\ &\text{where } \vec{\Phi}_{i-1} = (U_{i-1}, R_{i-1}, S_{i-1}, T_{i-1}) \text{ and } \vec{\varphi}_{i} = (u_{i}, r_{i}, s_{i}, t_{i}) \\ &\text{= Operation } \vec{\Phi}_{i} = \vec{\varphi}_{i} \circ \vec{\Phi}_{i-1} \text{ translates into} \\ &(U_{i}, R_{i}, S_{i}, T_{i}) = (u_{i}, r_{i}, s_{i}, t_{i}) \circ (U_{i-1}, R_{i-1}, S_{i-1}, T_{i-1}) \text{ with} \\ &\begin{cases} U_{i} = U_{i-1}u_{i} \\ R_{i} = u_{i}{}^{2}R_{i-1} + r_{i} \\ S_{i} = u_{i}S_{i-1} + s_{i} \\ T_{i} = u_{i}{}^{3}T_{i-1} + u_{i}{}^{2}s_{i}R_{i-1} + t_{i} \end{cases} \\ &\text{for } i \ge 1, \text{ and } (U_{0}, R_{0}, S_{0}, T_{0}) := 1 = (1, 0, 0, 0) \\ \end{cases} \end{split}$$

## **New Operations**

• Given two elliptic curves  $E_{\vec{\Phi}}$  and  $E_{\vec{\Phi}'}$  being isomorphic to  $E_1$ , if

$$\Psi_{\vec{\varphi}} \colon \boldsymbol{E}_{\vec{\Phi}} \xrightarrow{\sim} \boldsymbol{E}_{\vec{\Phi}'}$$

denotes the isomorphism between  $E_{\vec{\Phi}}$  and  $E_{\vec{\Phi}'}$ , we define

$$\begin{cases} \mathsf{iADD}_{\vec{\Phi}} \colon (\mathbf{P_1}, \mathbf{P_2}) \mapsto (\Psi_{\vec{\varphi}}(\mathbf{P_1} + \mathbf{P_2}), \vec{\varphi}) \\ \mathsf{iADDU}_{\vec{\Phi}} \colon (\mathbf{P_1}, \mathbf{P_2}) \mapsto (\Psi_{\vec{\varphi}}(\mathbf{P_1} + \mathbf{P_2}), \Psi_{\vec{\varphi}}(\mathbf{P_1}), \vec{\varphi}) \\ \mathsf{iADDC}_{\vec{\Phi}} \colon (\mathbf{P_1}, \mathbf{P_2}) \mapsto (\Psi_{\vec{\varphi}}(\mathbf{P_1} + \mathbf{P_2}), \Psi_{\vec{\varphi}}(\mathbf{P_1} - \mathbf{P_2}), \vec{\varphi}) \\ \mathsf{iDBL}_{\vec{\Phi}} \colon \mathbf{P_1} \mapsto (\Psi_{\vec{\varphi}}(\mathbf{2P_1}), \vec{\varphi}) \\ \mathsf{iDBLU}_{\vec{\Phi}} \colon \mathbf{P_1} \mapsto (\Psi_{\vec{\varphi}}(\mathbf{2P_1}), \Psi_{\vec{\varphi}}(\mathbf{P_1}), \vec{\varphi}) \end{cases}$$



#### ■ Short Weierstraß model

| Algorithm            | Cost/bit            |  |
|----------------------|---------------------|--|
| Montgomery ladder    | $\underline{8M+6S}$ |  |
| Double-and-add       | 7M + 8.5S           |  |
| Double-and-add + NAF | 6M + 6.33S          |  |

- Twisted Edwards model
  - unified iADD: 10M + 1S
  - unified iADDU: 12M + 1S
  - unified iADDC: 13M + 1S





## Summary

- Re-casting and generalization of Meloni's technique using elliptic curve isomorphisms
- New strategies for evaluating scalar multiplications on elliptic curves
  - without inversion
  - applicable to any scalar multiplication algorithm
  - applicable to any elliptic curve model
  - (nicely combine with certain countermeasures)



