Attacks in the multi-user setting: Discrete logarithm, Even-Mansour and PRINCE

Pierre-Alain Fouque¹, Antoine Joux², Chrysanthi Mavromati³

¹ Université Rennes 1 and Institut Universitaire de France
² CryptoExperts and Chaire de Cryptologie de la Fondation de l'UPMC
³Sogeti/ESEC R&D Lab and UVSQ Laboratoire PRiSM

12 June 2014

The multi-user setting

Cryptographers prove the security of their schemes in a single-user model.

In real world: There are many users, each with a different key, sending each other encrypted data.

Multi-user setting

Main ideas

- Graph of key relations
- New variant of memory-less collision attacks

Generic discrete logarithm

- Single-user discrete log: time \sqrt{N} (generic group)
- Multi-user discrete log (L logs):
 - studied by Kuhn and Struik
 - use of the parallel version of the Pollard rho technique with distinguished points
 - time \sqrt{NL} , $L \leq N^{1/4}$

Distinguished points for discrete logarithms

• Define a random function $f: \mathcal{G} \to \mathcal{G}$

$$f(z) = \begin{cases} z^2 & \text{if } z \in \mathcal{G}_1, \\ gz & \text{if } z \in \mathcal{G}_2, \end{cases}$$

where $G_1 \cup G_2 = G$.

- Define a distinguished subset S_0
- Build chains from random startpoints: $z_{i+1} = f(z_i)$
- Stop chain when $z_\ell = d \in S_0$

$$g^{x_1} = y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} y_4 \xrightarrow{f} log_g d = Ax_1 + B$$

$$\downarrow d$$

New method

$$g^{x^{(0)}} = y_0^{(0)} \xrightarrow{f} \cdots \xrightarrow{f} \cdots$$

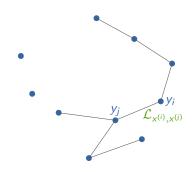
$$g^{x^{(1)}} = y_0^{(1)} \xrightarrow{f} \cdots \xrightarrow{f} \cdots$$



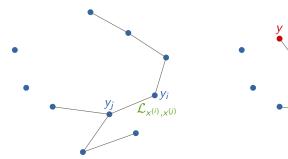
linear relation between $x^{(i)}$ and $x^{(j)}$

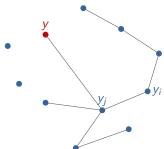
$$g^{x^{(L)}} = y_0^{(L)} \xrightarrow{f} \cdots \xrightarrow{f} \cdots$$

New method - Construct the graph



New method - Construct the graph



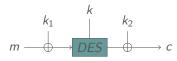


 \rightarrow learn all keys in connected component

Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt '91].

motivated by the DESX construction [Rivest, 1984]



DES key k, whitening keys k_1 , k_2

Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt '91].

• motivated by the DESX construction [Rivest, 1984]



DES key k, whitening keys k_1, k_2

minimal construction of a blockcipher

$$\Pi_{K_1,K_2}(m) = \pi(m \oplus K_1) \oplus K_2$$

$$m \xrightarrow{K_1} K_2 \longrightarrow \pi \longrightarrow \Pi(m)$$

- keyed permutation family Π_{K_1,K_2}
- π is a public permutation on *n*-bit values ($N=2^n$)
- two whitening keys K_1 , K_2 of n-bits

Known results in the single-user model

Main result: Any attack with D queries to Π and T off-line computation (queries to the public permutation π) has an upper bound of $O(DT/2^n)$ on probability of success.

Single-Key EM: Proved secure with the same bound [Dunkelman et al.]

Slidex attack - Single key case

[Dunkelman et al., 2012]

Assume that two plaintexts $(P, P^{'})$ satisfy $P \oplus P^{'} = K$ (slid pair).

Slidex attack - Single key case

[Dunkelman et al., 2012]

Assume that two plaintexts $(P, P^{'})$ satisfy $P \oplus P^{'} = K$ (slid pair).

Apply the Davies-Meyer construction to Π and π :

$$F(P) = \Pi(P) \oplus P$$
 and $f(P) = \pi(P) \oplus P$

$$F(P') = \Pi(P') \oplus P' = \Pi(P \oplus K) \oplus P \oplus K$$

$$= \pi(P \oplus K \oplus K) \oplus K \oplus P \oplus K$$

$$= \pi(P) \oplus P = f(P)$$

$$\Rightarrow F(P') = f(P)$$

Slidex attack - Single key case

[Dunkelman et al., 2012]

Assume that two plaintexts $(P, P^{'})$ satisfy $P \oplus P^{'} = K$ (slid pair).

Apply the Davies-Meyer construction to Π and π :

$$F(P) = \Pi(P) \oplus P$$
 and $f(P) = \pi(P) \oplus P$

$$F(P') = \Pi(P') \oplus P' = \Pi(P \oplus K) \oplus P \oplus K$$

$$= \pi(P \oplus K \oplus K) \oplus K \oplus P \oplus K$$

$$= \pi(P) \oplus P = f(P)$$

$$\Rightarrow F(P') = f(P)$$

Find a collision,

$$\pi(\mathsf{P}) \oplus \mathsf{P} = \Pi(\mathsf{P}^{'}) \oplus \mathsf{P}^{'}$$

Then, $P \oplus P'$ is a good candidate for K.

Slidex attack - Extending to the two key case

Fix $\delta \in \{0,1\}^n$

Assume that two plaintexts (P, P') satisfy:

$$P \oplus P' = K_1 \text{ or } P \oplus P' = K_1 \oplus \delta.$$

$$F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$$
 and $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

$$\Rightarrow F(P') = f(P)$$
 and $F(P' \oplus \delta) = f(P)$

Find a collision,

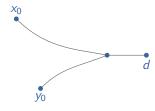
$$\Pi(\mathbf{P}^{'}) \oplus \Pi(\mathbf{P}^{'} \oplus \delta) = \pi(\mathbf{P}) \oplus \pi(\mathbf{P} \oplus \delta)$$

Then, $P \oplus P'$ and $P \oplus P' \oplus \delta$ are good candidates for K_1 .

The distinguished points method

- Define a function f on a set S of size N.
- Define a distinguished subset S_0 of S
- Build chains from random startpoints: $x_{i+1} = f(x_i)$
- Stop chain when $x_\ell = d \in S_0$
- Store (x_0, d, ℓ)

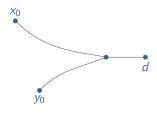
How do we construct a collision?

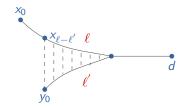


The distinguished points method

- Define a function f on a set S of size N.
- Define a distinguished subset S_0 of S
- Build chains from random startpoints: $x_{i+1} = f(x_i)$
- Stop chain when $x_\ell = d \in S_0$
- Store (x_0, d, ℓ)

How do we construct a collision? How do we recover a chain?





Application on Even-Mansour - First trial

Goal: Find a collision between a set of chains using the public permutation π and a chain obtained from the keyed permutation Π

Define
$$F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$$
 and $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

→ These chains can cross but not merge

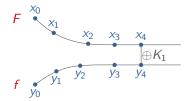
Application on Even-Mansour - New idea

Define new functions:

$$F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta)$$
 and $f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta)$

- Assume that two plaintexts (P, P') satisfy: $P' = P \oplus K1$ or $P' = P \oplus K_1 \oplus \delta$
- Then $F(P') = f(P) \oplus K_1(\text{resp.} \oplus \delta)$

\rightarrow These chains can become parallel



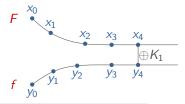
Application on Even-Mansour - New idea

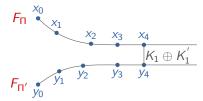
Define new functions:

$$F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta)$$
 and $f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta)$

- Assume that two plaintexts (P, P') satisfy: $P' = P \oplus K1$ or $P' = P \oplus K_1 \oplus \delta$
- Then $F(P') = f(P) \oplus K_1(\text{resp.} \oplus \delta)$

\rightarrow These chains can become parallel





Detection of parallel chains with distinguished points

- For f chains: define a distinguished point P as a point with a value of $\pi(P) \oplus \pi(P \oplus \delta) \in S_0$
- For F chains: define a distinguished point P' as a point with a value of $\Pi(P') \oplus \Pi(P' \oplus \delta) \in S_0$
- If $P' = P \oplus K1$ and P is a distinguish point in the f chain, then:

$$\Pi(P^{'}) \oplus \Pi(P^{'} \oplus \delta) = \pi(P^{'} \oplus K_{1}) \oplus \cancel{K}_{2} \oplus \pi(P^{'} \oplus K_{1} \oplus \delta) \oplus \cancel{K}_{2} \\
= \pi(P) \oplus \pi(P \oplus \delta)$$

and then P' is a distinguished point in the F chain

$$\bullet \rightarrow P \oplus P' = K_1$$

New attack on Even-Mansour

- Build chains from $f(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta)$
 - Stop if $\pi(P) \oplus \pi(P \oplus \delta)$ arrives at a distinguished point
- Build chains from $F(P) = P \oplus \Pi(P) \oplus \Pi(P \oplus \delta)$
 - Stop if $\Pi(P) \oplus \Pi(P \oplus \delta)$ arrives at a distinguished point
- These chains cannot merge but can become parallel
 - Assume $P^{'}=P\oplus K_1$ or $P^{'}=P\oplus K_1\oplus \delta$
 - $\rightarrow F(P^{'}) = f(P) \oplus K_1 \ (\oplus \delta \ \text{respectively})$
- We only need to store endpoints (don't have to recompute chains)

Attack Even-Mansour in the multi-user setting

- Build chains from f of length $2^{n/3}$
- Build chains from F of length $2^{n/3}$ for each user
- Construct a graph:
 - Nodes are labelled by the users and the unkeyed user
 - If $F^{(i)} = F^{(j)}$ (for users (i), (j)), then add a vertex between the two nodes
 - $\rightarrow K_1^{(i)} \oplus K_1^{(j)} (\oplus \delta)$
 - If we find a single collision between a user and the unkeyed user, then
 we learn all keys (in the connected component)

Analysis of the attack:

For $2^{n/3}$ users, $2^{n/3}$ queries/user, $2^{n/3}$ unkeyed queries \rightarrow recover almost all $2^{n/3}$ keys

Description of PRINCE

PRINCE [Borghoff et al., Asiacrypt 2012]

- 64-bit lightweight block cipher
- 128-bit key k split into equal parts: $k = k_0 \| k_1$
- extension to 192 bit: $k = (k_0 || k_1) \to (k_0 || k_0' || k_1)$
- k_0' derived from k_0 by using the linear function L': $L'(k_0) = (k_0 \gg 1) \oplus (k_0 \gg 63)$
- α -reflection property

$$\forall (k_0 || k'_0 || k_1), \ D_{(k_0 || k'_0 || k_1)}(\cdot) = E_{(k'_0 || k_0 || k_1 \oplus \alpha)}(\cdot)$$

$$E_k(m) = k_0' \oplus Pcore_{k_1}(m \oplus k_0)$$

Attacks on PRINCE in the single and multi-user setting

Attack in the multi-user setting

Total cost 2^{65} operations for deducing k_0 and k_1 of 2 users in a set of 2^{32} .

Attack in the single-user setting

$$T_{off} = 2^{96}, T_{on} = 2^{32}, M = 2^{32}$$

$$DT_{off} = 2^{128}$$

Conclusion

- Propose two new algorithmic ideas to improve collision based attacks
- Application of the first idea to solve the discrete logarithm problem in the multi-user setting
- Application of both ideas to the Even-Mansour scheme
- Propose two new attacks for PRINCE
 - The attacks have been applied to DESX with some differences

Conclusion

- Propose two new algorithmic ideas to improve collision based attacks
- Application of the first idea to solve the discrete logarithm problem in the multi-user setting
- Application of both ideas to the Even-Mansour scheme
- Propose two new attacks for PRINCE
 - The attacks have been applied to DESX with some differences

Thank you for your attention!