General isometries of codes

Serhii DYSHKO

IMATH, Université de Toulon

The MacWilliams Extension Theorem

Let L be a finite field, m be a positive integer and L^m be a Hamming space.

Definition

For two codes $C_1, C_2 \subseteq L^m$, the map $f : C_1 \to C_2$ is called an **isometry**, if it preserves the Hamming metrics.

Theorem (MacWilliams Extension Theorem)

Let $C \subseteq L^m$ be a linear code. Each linear isometry of C extends to a linear isometry of space.

Theorem

All possible linear isometries $h: L^m \to L^m$ are monomial:

- multiplication of the coordinates by elements of $L \setminus \{0\}$
- permutation of the coordinates

Extendibility of isometries

Let $K \subseteq L$ be a pair of finite fields.

Definition

Code C is called K-linear if it is a K-linear subspace in L^m .

Question: Can *K*-linear isometry $f : C_1 \to C_2$ be extended to the *K*-linear isometry $h : L^m \to L^m$?

Codes diagram $K \subseteq L$

Example of unextendible isometry

Let $L = \mathbb{F}_4$ (generated by $\omega^2 = \omega + 1$), $K = \mathbb{F}_2$ and m = 3. Consider the following \mathbb{F}_2 -linear codes C_1, C_2 and \mathbb{F}_2 -linear map f:

$$C_1 = \begin{bmatrix} 1 & 1 & 0 & & 1 & 1 & 0 \\ 1 & 0 & 1 & & f & \omega & \omega & 0 \\ 0 & 1 & 1 & \longrightarrow & \omega^2 & \omega^2 & 0 \\ 0 & 0 & 0 & & 0 & 0 & 0 \end{bmatrix} = C_2.$$

The map f is an isometry and cannot be extended to an \mathbb{F}_2 -linear isometry of \mathbb{F}_4^3 :

Theorem

All possible K-linear isometries of L^m are general monomial

- action of $Aut_{K}(L)$ on the coordinate
- permutation of the coordinates

イロン 不通 と 不良 と 不良 と 一項

Extendibility of K-linear isometries

Theorem (Extension theorem for *K*-linear codes)

Let $K \subseteq L$ be a pair of finite fields. If the length of a K-linear code is not greater than the cardinality of the field K, then all K-linear isometries of the code are extendible.

Remark

The results of the theorem cannot be improved: for any pair of fields $K \subset L$ there exists a *K*-linear code *C* of the length greater than |K| with unextendible *K*-linear isometry.

(日) (同) (三) (三) (三)

Generator matrix

A K-linear code C can be presented by the generator matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{km} \end{pmatrix} \in \mathsf{M}_{k \times m}(L)$$

where code C is the K-span of A's rows.

Example

Defined previously \mathbb{F}_2 -linear codes $C_1, C_2 \subset \mathbb{F}_4^3$ have the following generator matrices:

$$C_1$$
 with $A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, and C_2 with $A_2 = \begin{pmatrix} 1 & 1 & 0 \\ \omega & \omega & 0 \end{pmatrix}$.

S. Dyshko

Generator matrix and spaces

Consider L as a *n*-dimensional vector space over K. Chose a K-basis b_1, \ldots, b_n in L. For each $a_{ij} \in L$ let $a_{ij} = \sum_{l=1}^n b_l a_{ii}^{(l)}$, for $a_{ii}^{(I)} \in K$. $A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{11} & \dots & a_{1m} \end{pmatrix} \Rightarrow V_1, \dots, V_m$ $B = \begin{pmatrix} & & & & & & & & \\ & a_{11}^{(1)} & \dots & a_{11}^{(n)} & & & & & & \\ & \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots \\ & a_{k1}^{(1)} & \dots & a_{k1}^{(n)} & & & & & & & \\ & a_{km}^{(1)} & \dots & a_{km}^{(n)} & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$

 $B \in M_{k \times mn}(K)$ is the K-generator matrix of K-linear code C. Spaces V_1, \ldots, V_m are K-subspaces in K^k with dim_K $V_i \le n$.

<ロ> (四) (四) (三) (三) (三) (三)

Maps and spaces

Let C_1 and C_2 be K-linear codes with generator matrices A_1 and A_2 . Let $f : C_1 \to C_2$ be a K-linear map that maps the row *i* of A_1 to the row *i* of A_2 .

$$A_{1} = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{km} \end{pmatrix} \xrightarrow{f} \begin{pmatrix} c_{11} & \dots & c_{1m} \\ \vdots & \ddots & \vdots \\ c_{k1} & \dots & c_{km} \end{pmatrix} = A_{2}$$
$$V_{1}, \dots, V_{m} \rightarrow U_{1}, \dots, U_{m}$$

The tuple of spaces V_1, \ldots, V_m corresponds to A_1 and U_1, \ldots, U_m corresponds to A_2 .

S. Dyshko

イロト 不得下 イヨト イヨト 二日

Main theorem

Theorem (Isometry criterium)

Let C_1, C_2 be K-linear codes in L^m and $f : C_1 \rightarrow C_2$ be a K-linear map. The map f is isometry if, and only if, the following equality holds:

$$\sum_{i=1}^m \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^m \frac{1}{|U_i|} \mathbb{1}_{U_i}$$

Extendibility and trivial solution

$$\sum_{i=1}^{m} \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^{m} \frac{1}{|U_i|} \mathbb{1}_{U_i}$$

There is always a **trivial solution:** if tuples of subspaces V_1, \ldots, V_m and U_1, \ldots, U_m coincide (up to permutations), then they satisfy the equation.

Theorem

The K-linear code isometry $f : C_1 \rightarrow C_2$ is extendible, iff the solution of the equation is trivial.

Nontrivial solution example

Let $L = \mathbb{F}_4$ (generated by $\omega^2 = \omega + 1$) and $K = \mathbb{F}_2$ and m = 3. Consider the following code \mathbb{F}_2 -linear map:

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{f} \begin{pmatrix} 1 & 1 & 0 \\ \omega & \omega & 0 \end{pmatrix}$$

Isomorphism of \mathbb{F}_2 -spaces $\mathbb{F}_4 \cong \mathbb{F}_2^2 : 1 \longmapsto 10, \omega \longmapsto 01$

 $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{f} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$ $\langle (0 & 1) \rangle, \langle (1 & 0) \rangle, \langle (1 & 1) \rangle \to \mathbb{F}_{2}^{2}, \mathbb{F}_{2}^{2}, (0 & 0)$

イロト 不得 トイヨト イヨト

The equality $\sum_{i=1}^{m} \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^{m} \frac{1}{|U_i|} \mathbb{1}_{U_i}$ becomes:

$$\mathbb{1}_{\langle (0\,1)\rangle} + \mathbb{1}_{\langle (1\,0)\rangle} + \mathbb{1}_{\langle (1\,1)\rangle} = \mathbb{1}_{\mathbb{F}_2^2} + 2 \cdot \mathbb{1}_{(0\,0)}$$

$$\sum_{i=1}^{m} \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^{m} \frac{1}{|U_i|} \mathbb{1}_{U_i}$$

Theorem

There exists a nontrivial solution of equation iff m > |K|.

Theorem (Extension theorem for *K*-linear codes)

Let $K \subseteq L$ be a pair of finite fields. If the length of a K-linear code is not greater than the cardinality of the field K, then all K-linear isometries of the code are extendible.

(日) (同) (三) (三) (三)

Conclusions

- \square Prove the analogue of MacWilliams theorem for the code length $m \leq |K|$
- ${\ensuremath{\boxtimes}}$ Describe the code isometries with the threshold code length $m=|{\ensuremath{K}}|+1$
- $\ensuremath{\boxtimes}$ Describe the code automorphisms with the code length m = |K| + 1

イロト 不得下 イヨト イヨト 二日

Thank you! Any questions?

3

Appendix

Importance

If we know, whether the isometries of code are extendible, we can:

- 1. Describe all code isometries
- 2. Identify the codes with the same metric parameters
- 3. Determine, if the codes are equivalent
- 4. Simplify the task of codes classification

Additive (\mathbb{F}_p -linear) codes are important, because quantum stabilizer codes are additive.

(日) (同) (三) (三) (三)

Counterexamle for additive codes

Example

Let m = |K| + 1. Consider two K-linear codes $C_1 = \langle v_1, v_2 \rangle_K$ and $C_2 = \langle u_1, u_2 \rangle_K$ of length |K| + 1 with

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & x_1 & x_2 & \dots & x_{|\mathcal{K}|} \end{pmatrix} \xrightarrow{f} \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 0 & \omega & \omega & \dots & \omega \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

where $x_i \in K$ are all different and $\omega \in L \setminus K$. Define the K-linear map $f : C_1 \to C_2$ on the generators of C_1 in the following way: $f(v_1) = u_1$ and $f(v_2) = u_2$.

The map f is an isometry. But, there is no general monomial transformation that acts on C_1 in the same ways as the map f.

イロト 不得下 イヨト イヨト 二日

Known nonlinear analogues

Classes of nonlinear codes, for which the analogue of extension theorem holds (by S. Augustinovich & F. Solov'eva):

- All perfect *q*-ary codes, except [7,4,3]₂ and [4,2,3]₃ Hamming codes.
- 2. All q-ary (n, n-1) MDS codes for n > 4.
- 3. Binary linear [n, n-1, 2] codes, where $n \neq 4$

And does not holds:

- 1. All q-ary (q, 2) and (q + 1, 2) MDS codes, except for (2, 2) and (3, 2)
- 2. A binary linear code with parameters [4, 3, 2]
- 3. Equidistant codes with parameters $(n, q, 3)_q$, $n \ge 4, q \ge 10$, and $(6, 6, 4)_3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの