The MacWilliams Extension Theorem

Let \(L \) be a finite field, \(m \) be a positive integer and \(L^m \) be a Hamming space.

Definition
For two codes \(C_1, C_2 \subseteq L^m \), the map \(f : C_1 \to C_2 \) is called an isometry, if it preserves the Hamming metrics.

Theorem (MacWilliams Extension Theorem)
Let \(C \subseteq L^m \) be a linear code. Each linear isometry of \(C \) extends to a linear isometry of space.

Theorem
All possible linear isometries \(h : L^m \to L^m \) are monomial:

- multiplication of the coordinates by elements of \(L \setminus \{0\} \)
- permutation of the coordinates
Let $K \subseteq L$ be a pair of finite fields.

Definition

Code C is called K-**linear** if it is a K-linear subspace in L^m.

![Diagram](attachment:diagram.png)

Question: Can K-linear isometry $f : C_1 \to C_2$ be extended to the K-linear isometry $h : L^m \to L^m$?
Codes diagram $K \subseteq L$

- General nonlinear
- K-linear
- L-linear
Example of unextendible isometry

Let $L = \mathbb{F}_4$ (generated by $\omega^2 = \omega + 1$), $K = \mathbb{F}_2$ and $m = 3$. Consider the following \mathbb{F}_2-linear codes C_1, C_2 and \mathbb{F}_2-linear map f:

$$
C_1 = \begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}
\quad f
\begin{pmatrix}
1 & 1 & 0 \\
\omega & \omega & 0 \\
\omega^2 & \omega^2 & 0 \\
0 & 0 & 0
\end{pmatrix} = C_2.
$$

The map f is an isometry and cannot be extended to an \mathbb{F}_2-linear isometry of \mathbb{F}_4^3.

Theorem

All possible K-linear isometries of L^m are **general monomial**

- action of $\text{Aut}_K(L)$ on the coordinate
- permutation of the coordinates
Theorem (Extension theorem for K-linear codes)

Let $K \subseteq L$ be a pair of finite fields. If the length of a K-linear code is not greater than the cardinality of the field K, then all K-linear isometries of the code are extendible.

Remark

The results of the theorem cannot be improved: for any pair of fields $K \subseteq L$ there exists a K-linear code C of the length greater than $|K|$ with unextendible K-linear isometry.
Generator matrix

A K-linear code C can be presented by the generator matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \ldots & a_{km} \end{pmatrix} \in M_{k \times m}(L)$$

where code C is the K-span of A's rows.

Example

Defined previously \mathbb{F}_2-linear codes $C_1, C_2 \subset \mathbb{F}_4^3$ have the following generator matrices:

C_1 with $A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, and C_2 with $A_2 = \begin{pmatrix} 1 & 1 & 0 \\ \omega & \omega & 0 \end{pmatrix}$.
Generator matrix and spaces

Consider L as a n-dimensional vector space over K. Chose a K-basis b_1, \ldots, b_n in L. For each $a_{ij} \in L$ let $a_{ij} = \sum_{l=1}^{n} b_l a_{ij}^{(l)}$, for $a_{ij}^{(l)} \in K$.

\[
A = \begin{pmatrix}
 a_{11} & \cdots & a_{1m} \\
 \vdots & \ddots & \vdots \\
 a_{k1} & \cdots & a_{km}
\end{pmatrix} \Rightarrow V_1, \ldots, V_m
\]

\[
B = \begin{pmatrix}
 \underbrace{V_1}_{a_{11}^{(1)} \cdots a_{11}^{(n)}} & \cdots & \underbrace{V_m}_{a_{1m}^{(1)} \cdots a_{1m}^{(n)}} \\
 a_{11}^{(1)} & \cdots & a_{11}^{(n)} \\
 \vdots & \ddots & \vdots \\
 a_{k1}^{(1)} & \cdots & a_{k1}^{(n)}
\end{pmatrix}
\]

$B \in M_{k \times mn}(K)$ is the K-generator matrix of K-linear code C. Spaces V_1, \ldots, V_m are K-subspaces in K^k with $\dim_K V_i \leq n$.

Maps and spaces

Let C_1 and C_2 be K-linear codes with generator matrices A_1 and A_2. Let $f : C_1 \to C_2$ be a K-linear map that maps the row i of A_1 to the row i of A_2.

\[
A_1 = \begin{pmatrix}
 a_{11} & \cdots & a_{1m} \\
 \vdots & \ddots & \vdots \\
 a_{k1} & \cdots & a_{km}
\end{pmatrix} \overset{f}{\rightarrow} \begin{pmatrix}
 c_{11} & \cdots & c_{1m} \\
 \vdots & \ddots & \vdots \\
 c_{k1} & \cdots & c_{km}
\end{pmatrix} = A_2
\]

\[V_1, \ldots, V_m \rightarrow U_1, \ldots, U_m\]

The tuple of spaces V_1, \ldots, V_m corresponds to A_1 and U_1, \ldots, U_m corresponds to A_2.
Main theorem

Theorem (Isometry criterium)

Let C_1, C_2 be K-linear codes in L^m and $f : C_1 \to C_2$ be a K-linear map. The map f is isometry if, and only if, the following equality holds:

$$
\sum_{i=1}^{m} \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^{m} \frac{1}{|U_i|} \mathbb{1}_{U_i}
$$
Extendibility and trivial solution

\[
\sum_{i=1}^{m} \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^{m} \frac{1}{|U_i|} \mathbb{1}_{U_i}
\]

There is always a **trivial solution**: if tuples of subspaces \(V_1, \ldots, V_m\) and \(U_1, \ldots, U_m\) coincide (up to permutations), then they satisfy the equation.

Theorem

The \(K\)-linear code isometry \(f : C_1 \to C_2\) is extendible, iff the solution of the equation is trivial.
Nontrivial solution example

Let $L = \mathbb{F}_4$ (generated by $\omega^2 = \omega + 1$) and $K = \mathbb{F}_2$ and $m = 3$. Consider the following code \mathbb{F}_2-linear map:

\[
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix} \xrightarrow{f} \begin{pmatrix}
1 & 1 & 0 \\
\omega & \omega & 0
\end{pmatrix}
\]

Isomorphism of \mathbb{F}_2-spaces

$\mathbb{F}_4 \cong \mathbb{F}_2^2 : 1 \mapsto 10, \omega \mapsto 01$

\[
\begin{pmatrix}
0 & 1 & 0 & 10 \\
10 & 0 & 0 & 10
\end{pmatrix} \xrightarrow{f} \begin{pmatrix}
10 & 10 & 00 \\
01 & 01 & 00
\end{pmatrix}
\]

$\langle (0 1) \rangle, \langle (1 0) \rangle, \langle (1 1) \rangle \rightarrow \mathbb{F}_2^2, \mathbb{F}_2^2, (0 0)$

The equality $\sum_{i=1}^{m} \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^{m} \frac{1}{|U_i|} \mathbb{1}_{U_i}$ becomes:

$\mathbb{1}_{\langle (0 1) \rangle} + \mathbb{1}_{\langle (1 0) \rangle} + \mathbb{1}_{\langle (1 1) \rangle} = \mathbb{1}_{\mathbb{F}_2^2} + 2 \cdot \mathbb{1}_{(0 0)}$
\[
\sum_{i=1}^{m} \frac{1}{|V_i|} \mathbb{1}_{V_i} = \sum_{i=1}^{m} \frac{1}{|U_i|} \mathbb{1}_{U_i}
\]

Theorem

There exists a nontrivial solution of equation iff \(m > |K| \).

Theorem (Extension theorem for \(K \)-linear codes)

Let \(K \subseteq L \) be a pair of finite fields. If the length of a \(K \)-linear code is not greater than the cardinality of the field \(K \), then all \(K \)-linear isometries of the code are extendible.
Conclusions

- Prove the analogue of MacWilliams theorem for the code length \(m \leq |K| \)
- Describe the code isometries with the threshold code length \(m = |K| + 1 \)
- Describe the code automorphisms with the code length \(m = |K| + 1 \)
Thank you!
Any questions?
Appendix
Importance

If we know, whether the isometries of code are extendible, we can:

1. Describe all code isometries
2. Identify the codes with the same metric parameters
3. Determine, if the codes are equivalent
4. Simplify the task of codes classification

Additive (\mathbb{F}_p-linear) codes are important, because quantum stabilizer codes are additive.
Counterexample for additive codes

Example

Let $m = |K| + 1$. Consider two K-linear codes $C_1 = \langle v_1, v_2 \rangle_K$ and $C_2 = \langle u_1, u_2 \rangle_K$ of length $|K| + 1$ with

$$
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix} =
\begin{pmatrix}
0 & 1 & 1 & \ldots & 1 \\
1 & x_1 & x_2 & \ldots & x_{|K|}
\end{pmatrix}
\mapsto
\begin{pmatrix}
0 & 1 & 1 & \ldots & 1 \\
0 & \omega & \omega & \ldots & \omega
\end{pmatrix}
= \begin{pmatrix}
u_1 \\
u_2
\end{pmatrix},
$$

where $x_i \in K$ are all different and $\omega \in L \setminus K$.

Define the K-linear map $f : C_1 \to C_2$ on the generators of C_1 in the following way: $f(v_1) = u_1$ and $f(v_2) = u_2$.

The map f is an isometry. But, there is no general monomial transformation that acts on C_1 in the same ways as the map f.
Known nonlinear analogues

Classes of nonlinear codes, for which the analogue of extension theorem holds (by S. Augustinovich & F. Solov’eva):

1. All perfect q-ary codes, except $[7, 4, 3]_2$ and $[4, 2, 3]_3$ Hamming codes.
2. All q-ary $(n, n − 1)$ MDS codes for $n > 4$.
3. Binary linear $[n, n − 1, 2]$ codes, where $n \neq 4$

And does not holds:

1. All q-ary $(q, 2)$ and $(q + 1, 2)$ MDS codes, except for $(2, 2)$ and $(3, 2)$
2. A binary linear code with parameters $[4, 3, 2]$
3. Equidistant codes with parameters $(n, q, 3)_q$, $n \geq 4, q \geq 10$, and $(6, 6, 4)_3$