Polar Grassmann codes of orthogonal type

Ilaria Cardinali
University of Siena
joint work with L. Giuzzi

Yacc 2014 - Porquerolles 9-13 June 2014

Projective and Orthogonal Grassmannians

Line Polar Grassmann Codes

Grassmannians

$$
V:=V(m, q), \quad 1 \leq k<m
$$

$$
\mathcal{G}_{m, k}: k-G r a s s m a n n i a n ~ o f ~ P G(V)
$$

* Points of $\mathcal{G}_{m, k}$: k-dimensional subspaces of V.
* Lines of $\mathcal{G}_{m, k}$: sets $I_{X, Y}:=\{Z: X<Z<Y\}$ with

$$
\operatorname{dim}(X)=k-1, \operatorname{dim}(Y)=k+1 .
$$

Grassmannians

$$
V:=V(m, q), \quad 1 \leq k<m
$$

$\mathcal{G}_{m, k}: k$-Grassmannian of $\operatorname{PG}(V)$

* Points of $\mathcal{G}_{m, k}$: k-dimensional subspaces of V.
* Lines of $\mathcal{G}_{m, k}$: sets $I_{X, Y}:=\{Z: X<Z<Y\}$ with

$$
\operatorname{dim}(X)=k-1, \operatorname{dim}(Y)=k+1 .
$$

Grassmann or Plürker embedding of $\mathcal{G}_{m, k}$

$$
\begin{aligned}
& e_{k}: \mathcal{G}_{m, k} \rightarrow \mathrm{PG}\left(\wedge^{k} V\right) \\
& \quad\left\langle v_{1}, \ldots, v_{k}\right\rangle \rightarrow\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle \\
& * \operatorname{dim}\left(e_{k}\right)=\binom{m}{k}
\end{aligned}
$$

$$
\begin{gathered}
V:=V(2 n+1, q), \quad \eta: \text { non-singular quadratic form of } V \\
\Delta_{n} \simeq Q(2 n, q): \text { polar space associated to } \eta \\
1 \leq k \leq n
\end{gathered}
$$

$$
\begin{aligned}
\Delta_{n, k}: & k \text {-polar Grassmannian associated to } \eta \\
& \text { (or k-Orthogonal Grassmannian) }
\end{aligned}
$$

* Points of $\Delta_{n, k}$: k-dimen. totally singular subspaces of V.

$$
\begin{aligned}
V:= & V(2 n+1, q), \quad \eta: \text { non-singular quadratic form of } V \\
& \Delta_{n} \simeq Q(2 n, q): \text { polar space associated to } \eta
\end{aligned}
$$

$$
1 \leq k \leq n
$$

$$
\begin{aligned}
\Delta_{n, k}: & \text { k-polar Grassmannian associated to } \eta \\
& \text { (or } k \text {-Orthogonal Grassmannian) }
\end{aligned}
$$

* Points of $\Delta_{n, k}$: k-dimen. totally singular subspaces of V.
* Lines of $\Delta_{n, k}$:
$k<n$: sets $I_{X, Y}:=\{Z: X<Z<Y\}$, with $\operatorname{dim}(X)=k-1, \operatorname{dim}(Y)=k+1$ and Y totally singular.
$k=n$: sets $I_{X}:=\left\{Z: X<Z<X^{\perp}\right\}$ with $\operatorname{dim}(X)=n-1$ and X, Z totally singular.

$$
\begin{gathered}
V:=V(2 n+1, q), \quad \eta: \text { non-singular quadratic form of } V \\
\Delta_{n} \simeq Q(2 n, q): \text { polar space associated to } \eta
\end{gathered}
$$

$$
1 \leq k \leq n
$$

$$
\begin{aligned}
\Delta_{n, k}: & k \text {-polar Grassmannian associated to } \eta \\
& \text { (or k-Orthogonal Grassmannian) }
\end{aligned}
$$

* Points of $\Delta_{n, k}$: k-dimen. totally singular subspaces of V.
* Lines of $\Delta_{n, k}$:
$k<n$: sets $I_{X, Y}:=\{Z: X<Z<Y\}$, with $\operatorname{dim}(X)=k-1, \operatorname{dim}(Y)=k+1$ and Y totally singular.
$k=n$: sets $I_{X}:=\left\{Z: X<Z<X^{\perp}\right\}$ with $\operatorname{dim}(X)=n-1$ and X, Z totally singular.

If $k<n$ then $\Delta_{n, k} \subseteq \mathcal{G}_{2 n+1, k}$

Line Polar Grassmann Codes

Grassmann or Plücker embedding of $\Delta_{n, k}$

$$
\varepsilon_{k}:\left\{\begin{array}{l}
\Delta_{n, k} \rightarrow \operatorname{PG}\left(W_{k}\right) \subseteq \operatorname{PG}\left(\bigwedge^{k} V\right) \\
\left\langle v_{1}, \ldots, v_{k}\right\rangle \rightarrow\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle
\end{array}\right.
$$

Line Polar Grassmann Codes

Grassmann or Plücker embedding of $\Delta_{n, k}$

$$
\varepsilon_{k}:\left\{\begin{array}{l}
\Delta_{n, k} \rightarrow \mathrm{PG}\left(W_{k}\right) \subseteq \mathrm{PG}\left(\wedge^{k} V\right) \\
\left\langle v_{1}, \ldots, v_{k}\right\rangle \rightarrow\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle
\end{array}\right.
$$

$$
\varepsilon_{k}:=e_{k} \mid \Delta_{n, k}
$$

Grassmann or Plücker embedding of $\Delta_{n, k}$

$$
\varepsilon_{k}:\left\{\begin{array}{l}
\Delta_{n, k} \rightarrow \mathrm{PG}\left(W_{k}\right) \subseteq \mathrm{PG}\left(\wedge^{k} V\right) \\
\left\langle v_{1}, \ldots, v_{k}\right\rangle \rightarrow\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle
\end{array}\right.
$$

$$
\varepsilon_{k}:=\left.e_{k}\right|_{\Delta_{n, k}}
$$

$k<n$: lines of $\Delta_{n, k}$ are mapped onto lines of $\mathrm{PG}\left(W_{k}\right)$.

Grassmann or Plücker embedding of $\Delta_{n, k}$

$$
\varepsilon_{k}:\left\{\begin{array}{l}
\Delta_{n, k} \rightarrow \mathrm{PG}\left(W_{k}\right) \subseteq \mathrm{PG}\left(\wedge^{k} V\right) \\
\left\langle v_{1}, \ldots, v_{k}\right\rangle \rightarrow\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right\rangle
\end{array}\right.
$$

$$
\varepsilon_{k}:=\left.e_{k}\right|_{\Delta_{n, k}}
$$

$k<n$: lines of $\Delta_{n, k}$ are mapped onto lines of $\mathrm{PG}\left(W_{k}\right)$. $k=n$: lines of $\Delta_{n, n}$ are mapped onto non singular conics of $\mathrm{PG}\left(W_{n}\right)$.

Projective and Orthogonal Grassmannians

Line Polar Grassmann Codes

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}$ for $1 \leq k \leq n$.

Line Polar Grassmann Codes

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}$ for $1 \leq k \leq n$.
If q is even then $\operatorname{dim}\left(\varepsilon_{k}\right)=\binom{2 n+1}{k}-\binom{2 n+1}{k-2}$ for $1 \leq k \leq n$.

Line Polar Grassmann Codes
$\varepsilon^{\text {spin }}: \Delta_{n, n} \rightarrow \operatorname{PG}\left(2^{n}-1, q\right):$ spin embedding
$\varepsilon^{\text {ver }}: \operatorname{PG}\left(2^{n}-1, q\right) \rightarrow \operatorname{PG}\left(\left(2^{n}+1\right) 2^{n-1}, q\right):$ veronese embedding
$\varepsilon^{\text {spin }}: \Delta_{n, n} \rightarrow \operatorname{PG}\left(2^{n}-1, q\right):$ spin embedding
$\varepsilon^{\text {ver }}: \operatorname{PG}\left(2^{n}-1, q\right) \rightarrow \operatorname{PG}\left(\left(2^{n}+1\right) 2^{n-1}, q\right):$ veronese embedding

Theorem [I.C., A. Pasini, JCTA 2013]

If q is odd then $\varepsilon_{n} \cong \varepsilon^{v e r} \circ \varepsilon^{\text {spin }}$.
$\varepsilon^{\text {spin }}: \Delta_{n, n} \rightarrow \operatorname{PG}\left(2^{n}-1, q\right):$ spin embedding
$\varepsilon^{\text {ver }}: \operatorname{PG}\left(2^{n}-1, q\right) \rightarrow \operatorname{PG}\left(\left(2^{n}+1\right) 2^{n-1}, q\right):$ veronese embedding

Theorem [I.C., A. Pasini, JCTA 2013]

If q is odd then $\varepsilon_{n} \cong \varepsilon^{v e r} \circ \varepsilon^{\text {spin }}$.
If q is even then $\varepsilon_{n} \cong\left(\varepsilon^{\text {ver }} \circ \varepsilon^{\text {spin }}\right) / \mathcal{N}$.

$$
\left(\varepsilon^{v e r} \circ \varepsilon^{s p i n}\right) / \mathcal{N}: \Delta_{n, n} \rightarrow \operatorname{PG}\left(\bigwedge^{n} V / \mathcal{N}\right)
$$

Projective codes

A linear $\left[N, K, d_{\text {min }}\right]_{q}$-code C is projective if the columns of its generator matrix are pairwise non-proportional.

Projective codes

A linear $\left[N, K, d_{\text {min }}\right]_{q}$-code C is projective if the columns of its generator matrix are pairwise non-proportional.
Ω : set of N points of $\operatorname{PG}(V), V=V(K, q)$.
\downarrow
$\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω

Projective codes

A linear $\left[N, K, d_{\text {min }}\right]_{q}$-code C is projective if the columns of its generator matrix are pairwise non-proportional.
Ω : set of N points of $\operatorname{PG}(V), V=V(K, q)$. \downarrow
$\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω

* The columns of a generator matrix of $\mathcal{C}(\Omega)$ are coordinates of the points of Ω.

Projective codes

A linear $\left[N, K, d_{\text {min }}\right]_{q}$-code C is projective if the columns of its generator matrix are pairwise non-proportional.
Ω : set of N points of $\operatorname{PG}(V), V=V(K, q)$.
\downarrow
$\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω

* The columns of a generator matrix of $\mathcal{C}(\Omega)$ are coordinates of the points of Ω.

Theorem

Any semilinear collineation of $\mathrm{P} \Gamma \mathrm{L}(K, q)$ stabilizing Ω induces automorphisms of $\mathcal{C}(\Omega)$.

$\Omega \subset \mathrm{PG}(K-1, q)$ $\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω

$\Omega \subset \mathrm{PG}(K-1, q)$ $\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω

Parameters of $\mathcal{C}(\Omega)$:

- $N=|\Omega|$;
$\Omega \subset \mathrm{PG}(K-1, q)$
$\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω
Parameters of $\mathcal{C}(\Omega)$:
- $N=|\Omega|$;
- $K=\operatorname{dim}(\langle\Omega\rangle)$;
$\Omega \subset \mathrm{PG}(K-1, q)$ $\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω

Parameters of $\mathcal{C}(\Omega)$:

- $N=|\Omega|$;
- $K=\operatorname{dim}(\langle\Omega\rangle)$;
- $d_{\text {min }}=N-\max _{\Pi \leq \mathrm{PG}(K-1, q)}|\Pi \cap \Omega|$.

$\Omega \subset \mathrm{PG}(K-1, q)$
$\mathcal{C}(\Omega)$: projective $\left[N, K, d_{\text {min }}\right]_{q}$-code associated to Ω
Parameters of $\mathcal{C}(\Omega)$:
- $N=|\Omega|$;
- $K=\operatorname{dim}(\langle\Omega\rangle)$;
- $d_{\text {min }}=N-\max _{\Pi \leq \mathrm{PG}(K-1, q)}|\Pi \cap \Omega|$.

The study of the weights of $\mathcal{C}(\Omega)$ is equivalent to the study of the hyperplane sections of Ω.

Projective and Orthogonal Grassmannians

Grassmann Codes

- $\mathcal{G}_{m, k}$: Grassmannian of the k-subspaces of $V(m, q)$.

Grassmann Codes

- $\mathcal{G}_{m, k}$: Grassmannian of the k-subspaces of $V(m, q)$.
- $\mathcal{C}\left(\mathcal{G}_{m, k}\right):=\mathcal{C}\left(e_{k}\left(\mathcal{G}_{n, k}\right)\right):$ Grassmann code, determined by

$$
e_{k}\left(\mathcal{G}_{m, k}\right) \subseteq \operatorname{PG}\left(\bigwedge^{k} V\right)
$$

Grassmann Codes

- $\mathcal{G}_{m, k}$: Grassmannian of the k-subspaces of $V(m, q)$.
- $\mathcal{C}\left(\mathcal{G}_{m, k}\right):=\mathcal{C}\left(e_{k}\left(\mathcal{G}_{n, k}\right)\right)$: Grassmann code, determined by

$$
e_{k}\left(\mathcal{G}_{m, k}\right) \subseteq \operatorname{PG}\left(\bigwedge^{k} V\right)
$$

Theorem [Nogin, 1996]

The parameters of $\mathcal{C}\left(\mathcal{G}_{m, k}\right)$ are:

$$
\begin{gathered}
N=\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q}=\frac{\left(q^{m}-1\right)\left(q^{m}-q\right) \cdots\left(q^{m}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)} \\
K=\binom{m}{k}, \quad d_{\min }=q^{(m-k) k}
\end{gathered}
$$

Projective and Orthogonal Grassmannians

Minimum distance

k-multilinear alternating forms on V \leftrightarrow Hyperplanes of $\bigwedge^{k} V$

Minimum distance

k-multilinear alternating forms on V
\leftrightarrow Hyperplanes of $\bigwedge^{k} V$

Remark

- Minimum weight codewords in a Grassmann code correspond to k-multilinear alternating forms with a maximum number of totally isotropic spaces.
- When $k=2$ these are non-null forms with maximum radical.

Definition

- $\Delta_{n, k}$: Orthogonal Grassmannian
- $\mathcal{C}\left(\Delta_{n, k}\right):=\mathcal{C}\left(\varepsilon_{k}\left(\Delta_{n, k}\right)\right)$: Orthogonal Grassmann code, determined by $\varepsilon_{k}\left(\Delta_{n, k}\right)$.
* I.C., Luca Giuzzi, Codes and caps from Orthogonal Grassmannians, Finite Fields Appl. 24 (2013), 148-169.

Orthogonal Grassmann Codes: Motivation

- Subcodes of Grassmann codes (obtained by puncturing)

Orthogonal Grassmann Codes: Motivation

- Subcodes of Grassmann codes (obtained by puncturing)
- Better than Grassmann codes

Orthogonal Grassmann Codes: Motivation

- Subcodes of Grassmann codes (obtained by puncturing)
- Better than Grassmann codes
- Interesting geometry

Orthogonal Grassmann codes: previous results

Theorem [I.C., Luca Giuzzi]

For $1 \leq k<n$, the parameters of $\mathcal{C}\left(\Delta_{n, k}\right)$ are

$$
\begin{gathered}
N=\prod_{i=0}^{k-1} \frac{q^{2(n-i)}-1}{q^{i+1}-1}, \quad K=\left\{\begin{array}{cc}
\binom{2 n+1}{k} & \text { for } q \text { odd } \\
\binom{2 n+1}{k}-\binom{2 n+1}{k-2} & \text { for } q \text { even }
\end{array}\right. \\
d \geq(q+1)\left(q^{k(n-k)}-1\right)+1 .
\end{gathered}
$$

Orthogonal Grassmann codes: previous results

Theorem [I.C., Luca Giuzzi]

For $1 \leq k<n$, the parameters of $\mathcal{C}\left(\Delta_{n, k}\right)$ are

$$
\left.\begin{array}{c}
N=\prod_{i=0}^{k-1} \frac{q^{2(n-i)}-1}{q^{i+1}-1}, \quad K=\left\{\begin{array}{c}
\left(\begin{array}{c}
2 n+1 \\
(2 n+1 \\
k
\end{array}\right)-\binom{2 n+1}{k-2}
\end{array} \text { for } q \text { odd } q\right. \text { even }
\end{array}\right] \begin{gathered}
d \geq(q+1)\left(q^{k(n-k)}-1\right)+1 .
\end{gathered}
$$

Theorem

$\operatorname{MAut}\left(\mathcal{C}\left(\Delta_{n, k}\right)\right) \cong \Gamma O(2 n+1, q)$.

Theorem [I.C., Luca Giuzzi, 2013]

The code $\mathcal{C}\left(\Delta_{2,2}\right)$ arising from $\varepsilon_{2}\left(\Delta_{2,2}\right)$ has parameters

$$
\begin{gathered}
N=\left(q^{2}+1\right)(q+1), \quad K= \begin{cases}10 & \text { for } q \text { odd } \\
9 & \text { for } q \text { even }\end{cases} \\
d=q^{2}(q-1) .
\end{gathered}
$$

Theorem [I.C., Luca Giuzzi, 2013]

The code $\mathcal{C}\left(\Delta_{3,3}\right)$ arising from $\varepsilon_{3}\left(\Delta_{3,3}\right)$ has parameters

$$
\left.\begin{array}{c}
N=\left(q^{3}+1\right)\left(q^{2}+1\right)(q+1), \quad K=35, \\
d=q^{2}(q-1)\left(q^{3}-1\right) \\
\text { and }
\end{array}\right\} \quad \text { for } q \text { odd } .
$$

Projective and Orthogonal Grassmannians

Line Polar Grassmann Codes

Consider $\mathcal{C}\left(\Delta_{n, 2}\right)$

Line Polar Grassmann Codes

Consider $\mathcal{C}\left(\Delta_{n, 2}\right)$

- Length: number of totally singular lines (well known).

Line Polar Grassmann Codes

Consider $\mathcal{C}\left(\Delta_{n, 2}\right)$

- Length: number of totally singular lines (well known).
- Dimension:
[I.C. and A. Pasini, Grassmann and Weyl Embeddings of Orthogonal Grassmannians, J. Algebr. Comb., 38 (2013), 863-888].

Line Polar Grassmann Codes

Consider $\mathcal{C}\left(\Delta_{n, 2}\right)$

- Length: number of totally singular lines (well known).
- Dimension:
[I.C. and A. Pasini, Grassmann and Weyl Embeddings of Orthogonal Grassmannians, J. Algebr. Comb., 38 (2013), 863-888].
- Minimum distance:

Line Polar Grassmann Codes

Consider $\mathcal{C}\left(\Delta_{n, 2}\right)$

- Length: number of totally singular lines (well known).
- Dimension:
[I.C. and A. Pasini, Grassmann and Weyl Embeddings of Orthogonal Grassmannians, J. Algebr. Comb., 38 (2013), 863-888].
- Minimum distance:
bilinear
alternating forms of $V \leftrightarrow$ Hyperplanes of $\bigwedge^{2} V$
\downarrow
maximum number of lines being simultaneously totally singular for the quadratic form η (defining $\Delta_{n, 2}$) and totally isotropic for a (degenerate) alternating form of V (defining a hyperplane of $\bigwedge^{2} V$).

Theorem [I.C., Luca Giuzzi]

For q odd the minimum distance of the codes $\mathcal{C}\left(\Delta_{n, 2}\right)$ is

$$
d_{\min }=q^{4 n-5}-q^{3 n-4}
$$

Theorem [I.C., Luca Giuzzi]

For q odd the minimum distance of the codes $\mathcal{C}\left(\Delta_{n, 2}\right)$ is

$$
d_{\min }=q^{4 n-5}-q^{3 n-4}
$$

- This applies also for $\Delta_{2,2}$.

Future Developments

- Minimum distance of $\mathcal{C}\left(\Delta_{n, 2}\right)$ for q even

Future Developments

- Minimum distance of $\mathcal{C}\left(\Delta_{n, 2}\right)$ for q even
- Minimum distance of $\mathcal{C}\left(\Delta_{n, k}\right)$ with $k>2$

Future Developments

- Minimum distance of $\mathcal{C}\left(\Delta_{n, 2}\right)$ for q even
- Minimum distance of $\mathcal{C}\left(\Delta_{n, k}\right)$ with $k>2$
- Higher weights

Future Developments

- Minimum distance of $\mathcal{C}\left(\Delta_{n, 2}\right)$ for q even
- Minimum distance of $\mathcal{C}\left(\Delta_{n, k}\right)$ with $k>2$
- Higher weights
- Dual code of $\mathcal{C}\left(\Delta_{n, k}\right)$

Future Developments

- Minimum distance of $\mathcal{C}\left(\Delta_{n, 2}\right)$ for q even
- Minimum distance of $\mathcal{C}\left(\Delta_{n, k}\right)$ with $k>2$
- Higher weights
- Dual code of $\mathcal{C}\left(\Delta_{n, k}\right)$
- Symplectic/Hermitian Grassmann codes

