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Grassmannians

V := V (m, q), 1 ≤ k < m

Gm,k : k–Grassmannian of PG(V )

* Points of Gm,k : k–dimensional subspaces of V .

* Lines of Gm,k : sets lX ,Y := {Z : X < Z < Y } with
dim(X ) = k − 1, dim(Y ) = k + 1.

Grassmann or Plücker embedding of Gm,k

ek : Gm,k → PG(
∧k V )

〈v1, . . . , vk〉 → 〈v1 ∧ v2 ∧ · · · ∧ vk〉

* dim(ek) =
(m
k

)
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V := V (2n + 1, q), η: non-singular quadratic form of V
∆n ' Q(2n, q) : polar space associated to η

1 ≤ k ≤ n

∆n,k : k–polar Grassmannian associated to η
(or k-Orthogonal Grassmannian)

* Points of ∆n,k : k–dimen. totally singular subspaces of V .

* Lines of ∆n,k :
k < n: sets lX ,Y := {Z : X < Z < Y }, with

dim(X ) = k − 1, dim(Y ) = k + 1 and Y totally singular.

k = n: sets lX := {Z : X < Z < X⊥} with
dim(X ) = n − 1 and X ,Z totally singular.

If k < n then ∆n,k ⊆ G2n+1,k
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Grassmann or Plücker embedding of ∆n,k

εk :

{
∆n,k → PG(Wk) ⊆ PG(

∧k V )

〈v1, . . . , vk〉 → 〈v1 ∧ v2 ∧ · · · ∧ vk〉

εk := ek |∆n,k

k < n : lines of ∆n,k are mapped onto lines of PG(Wk).

k = n : lines of ∆n,n are mapped onto non singular
conics of PG(Wn).
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Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =
(2n+1

k

)
for 1 ≤ k ≤ n.

If q is even then dim(εk) =
(2n+1

k

)
−
(2n+1
k−2

)
for 1 ≤ k ≤ n.
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εspin : ∆n,n → PG(2n − 1, q) : spin embedding

εver : PG(2n − 1, q)→ PG((2n + 1)2n−1, q) : veronese embedding

Theorem [I.C., A. Pasini, JCTA 2013]

If q is odd then εn ∼= εver ◦ εspin.
If q is even then εn ∼= (εver ◦ εspin)/N .

 

N   εver
○ε

spin
(Δn) 

PG(ΛnV) 

(εver ◦ εspin)/N : ∆n,n → PG(
∧n V /N )
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Projective codes

A linear [N,K , dmin]q-code C is projective if the columns of its
generator matrix are pairwise non–proportional.

Ω: set of N points of PG(V ), V = V (K , q).

l

C(Ω): projective [N,K , dmin]q-code associated to Ω

* The columns of a generator matrix of C(Ω) are coordinates of
the points of Ω.

Theorem

Any semilinear collineation of PΓL(K , q) stabilizing Ω induces
automorphisms of C(Ω).
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Ω ⊂ PG(K − 1, q)
C(Ω) : projective [N,K , dmin]q-code associated to Ω

Parameters of C(Ω):

N = |Ω|;
K = dim(〈Ω〉);

dmin = N −maxΠ≤PG(K−1,q)
codimΠ=1

|Π ∩ Ω|.

 

 Ω 

Π 
The study of the weights of C(Ω) is equivalent to the study of the
hyperplane sections of Ω.
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Grassmann Codes

Gm,k : Grassmannian of the k-subspaces of V (m, q).

C(Gm,k) := C(ek(Gn,k)): Grassmann code, determined by

ek(Gm,k) ⊆ PG(
∧k V ).

Theorem [Nogin, 1996]

The parameters of C(Gm,k) are:

N =

[
m
k

]
q

=
(qm − 1)(qm − q) · · · (qm − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
,

K =

(
m

k

)
, dmin = q(m−k)k .
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Minimum distance

k–multilinear
alternating forms on V

↔ Hyperplanes of
∧k V

Remark

Minimum weight codewords in a Grassmann code correspond
to k–multilinear alternating forms with a maximum number of
totally isotropic spaces.

When k = 2 these are non–null forms with maximum radical.
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Definition

∆n,k : Orthogonal Grassmannian

C(∆n,k) := C(εk(∆n,k)): Orthogonal Grassmann code,

determined by εk(∆n,k).

* I.C., Luca Giuzzi, Codes and caps from Orthogonal
Grassmannians, Finite Fields Appl. 24 (2013), 148-169.
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Orthogonal Grassmann Codes: Motivation

Subcodes of Grassmann codes (obtained by puncturing)

Better than Grassmann codes

Interesting geometry
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Orthogonal Grassmann codes: previous results

Theorem [I.C., Luca Giuzzi]

For 1 ≤ k < n, the parameters of C(∆n,k) are

N =
k−1∏
i=0

q2(n−i) − 1

qi+1 − 1
, K =

{ (2n+1
k

)
for q odd(2n+1

k

)
−
(2n+1
k−2

)
for q even

d ≥ (q + 1)(qk(n−k) − 1) + 1.

Theorem

MAut(C(∆n,k)) ∼= ΓO(2n + 1, q).
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Theorem [I.C., Luca Giuzzi, 2013]

The code C(∆2,2) arising from ε2(∆2,2) has parameters

N = (q2 + 1)(q + 1), K =

{
10 for q odd
9 for q even

d = q2(q − 1).
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Theorem [I.C., Luca Giuzzi, 2013]

The code C(∆3,3) arising from ε3(∆3,3) has parameters

N = (q3 + 1)(q2 + 1)(q + 1), K = 35,
d = q2(q − 1)(q3 − 1)

}
for q odd

and

N = (q3 + 1)(q2 + 1)(q + 1), K = 28,
d = q5(q − 1)

}
for q even.
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Line Polar Grassmann Codes

Consider C(∆n,2)

Length: number of totally singular lines (well known).
Dimension:
[I.C. and A. Pasini, Grassmann and Weyl Embeddings of
Orthogonal Grassmannians, J. Algebr. Comb., 38 (2013),
863–888].
Minimum distance:

bilinear
alternating forms of V

↔ Hyperplanes of
∧2 V

↓
maximum number of lines being simultaneously totally
singular for the quadratic form η (defining ∆n,2) and totally
isotropic for a (degenerate) alternating form of V (defining a
hyperplane of

∧2 V ).
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Theorem [I.C., Luca Giuzzi]

For q odd the minimum distance of the codes C(∆n,2) is

dmin = q4n−5 − q3n−4.

This applies also for ∆2,2.
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Future Developments

Minimum distance of C(∆n,2) for q even

Minimum distance of C(∆n,k) with k > 2

Higher weights

Dual code of C(∆n,k)

Symplectic/Hermitian Grassmann codes
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