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The problem

In the following, we fix
@ aprime p;
@ afinite subset D C Ny

For any m > 1, we consider the set Ep ,(m) C {0,...,p™ — 1}!°! consisting
of the solutions of a modular equation

ZD dugy
U= (Ud)deD s.t. ZD duy

0
0< u <p"—1

0 modp™—1

Vol
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For any integer, we define its p-weight as the sum of its p-ary digits
n=no+-+p" Npy = sp(n)=>_n

For U € Epp(m), let sp(U) = > Sp(Uq).
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For any integer, we define its p-weight as the sum of its p-ary digits
n=no+-+p" Npy = sp(n)=>_n
For U € Epp(m), let sp(U) = > Sp(Uq).

Problem
Find
op,p(m) :=min{sp(U), U € Epp(m)}




Why ?

We now give three results in order to motivate our problem; we denote by Fpym
the finite field with p™ elements.

The first one is about exponential sums; let f(x) = 3", agx® € Fq[x]p denote
a polynomial having its exponents in D; we define the exponential sum

Sn(f) = Y w(f(x)).

x€Fq

where 4 is a non trivial additive character of Fym.



Why ?

We now give three results in order to motivate our problem; we denote by Fpym
the finite field with p™ elements.

The first one is about exponential sums; let f(x) = 3", agx® € Fq[x]p denote
a polynomial having its exponents in D; we define the exponential sum

Sm(f) = Y w(f(x))-
x€Fq
where 4 is a non trivial additive character of Fym.

If we fix a root 7 of XP~' + p = 0, we have

Theorem (Moreno et al.)
Let f(x) € Fq[x]0,
@ the exponential sum Sy(f) is divisible by w72.»(™
@ there exists f € Fq[x]p such that Sy (f) is not divisible by woP.»(™M+1,




Codes, and boolean functions

We consider binary cyclic codes of length n. Such a code C can be seen as
an ideal in the group algebra F»[Z/nZ], defined by its zero set Z(C), which is
closed under multiplication by 2 in Z/nZ.

If we set D = Z(C) here, McEliece theorem on the divisibility of cyclic codes
can be written

Theorem

Let C be the code described above, with n = 2™ — 1. Then the Hamming
weight of any codeword is divisible by 2°0.2(™M~1 " and there exists a word
whose Hamming weight is not divisible by 2°0.2(™
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We consider binary cyclic codes of length n. Such a code C can be seen as
an ideal in the group algebra F»[Z/nZ], defined by its zero set Z(C), which is
closed under multiplication by 2 in Z/nZ.

If we set D = Z(C) here, McEliece theorem on the divisibility of cyclic codes
can be written

Theorem

Let C be the code described above, with n = 2™ — 1. Then the Hamming
weight of any codeword is divisible by 2°0.2(™M~1 " and there exists a word
whose Hamming weight is not divisible by 2°0.2(™

Let f : Fom — F2 be a boolean function. Its Walsh transform W; : Fom — Z is

Wi(a) := Sm(f+€a) = > (f(x) + ax).

x€Fq

Many properties of boolean functions depend on the divisibility of its Walsh
spectrum. For instance, if f(x) = x9 is a power function, the divisibility of its
Walsh spectrum is exactly op o(m) for D = {1, d}.



Study of the minimal weight: let the length vary

A first bound: if sp,(D) = max{sy(D), d € D}, we have

m(p—1)

7ol = s, D)
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Given a solution U = (ug)gep € Ep,p(m), we define
@ its length as ¢(U) = m;
@ its weight as sp(U);
o its absolute valueby >, dug = (p™ — 1)|U| € {1,--- , >, d}.



Study of the minimal weight: let the length vary

A first bound: if sp,(D) = max{sy(D), d € D}, we have

m(p—1)

70l = 7, (D)
Given a solution U = (ug)gep € Ep,p(m), we define
@ its length as ¢(U) = m;
@ its weight as sp(U);

o its absolute valueby >, dug = (p™ — 1)|U| € {1,--- , >, d}.
Remark
LetU € Epp(m), V € Epp(n) be such that |U| = |V|. Then the |D|-uple
W = U® V defined by (wg = p"ug + va) .,

is an element in Ep ,(m + n), satisfying

UW) = LU) +£(V), sp(W) = sp(U) + 8p(V) and [W| = |U| = | V]|




Shifting the solutions

Denote by §m» the map from {0,...,p™ — 1} to itself that sends
@ any i < p™ — 1 to the remainder of pi modulo p” — 1;
e p™ — 1 toitself.
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where ip_1 is the m — 1-th digit of /.
In particular the map § preserves the p-weight.



Shifting the solutions

Denote by §m» the map from {0,...,p™ — 1} to itself that sends
@ any i < p™ — 1 to the remainder of pi modulo p” — 1;
e p™ — 1 toitself.
Then 6, shifts the base p digits. Actually we get
Sm(i) = pi — (P = 1)im—1
where ip_1 is the m — 1-th digit of /.
In particular the map § preserves the p-weight.

For U = (Uq)aep € Epp(m), we define dmU := (dm(Ud))aco-
Lemma
We have:

@ omU € Epp(m)

@ dnmU has the same weight than U

Moreover we get
|6mU| = p|U| =) dug,m-1
D




Irreducible solutions
In the same way, we get

Lemma

Let U € Epp(m). Choose an integer1 < t<m—1, and forany d € D let
ug = p'wy + vy be the euclidean division of uy by p'.
We have the equalities :

> dve =p'16,'Ul - U] ;Y dwy = p" U] - |6, U.

deD deD

As a consequence, if |6, U| = |U| forsome1 <t<m-—1, we get

U=veW

Thus we can construct all solutions from the ones such that |U], ..., |67 U|
are pairwise distinct (and then m < 3", d).



Irreducible solutions

In the same way, we get
Lemma

Let U € Epp(m). Choose an integer1 < t<m—1, and forany d € D let
ug = p'wy + vy be the euclidean division of uy by p'.
We have the equalities :

> dve =p'16,'Ul - U] ;Y dwy = p" U] - |6, U.

deD deD

As a consequence, if|5,;’U| = |U| forsome1 < t<m-—1, we get

U=veW

Thus we can construct all solutions from the ones such that |U], ..., |67 U|
are pairwise distinct (and then m < 3", d).

Definition
We call such a solution an irreducible solution.




A linear lower bound for the minimal weights

Definition
We define the density of the set D with respect to p by

: op,p(m)
0p.p ;= Min ’7,1§m§§ d
o {m(p—n 5 }




A linear lower bound for the minimal weights

Definition
We define the density of the set D with respect to p by

: op,p(m)
0p.p ;= Min ’7,1§m§§ d
o {m(p—n 5 }

Then we have
Proposition
Forany m > 1, we have op,p(m) > m(p — 1)dp p.

UD,Z(m) o o




The case of complete sets

We fix some db, and consider D := {1 < i < db, (p,i) = 1}.
When p = 2, we have d;(D) = ! forany 2" — 1 < ap < 2"' — 3.

n



The case of complete sets

We fix some db, and consider D := {1 <i < ay, (p,i) = 1}.
When p = 2, we have 62(D) = 1 forany 2" —1 < dp < omt _ 3,
When p is odd, we have

@ J,(D) = L[E} when dp < p—1

@ (D) =

@ (D) =

n(p ry When p” —1 < do <p™'—p-1

thenp”*‘ —p—1<dy<p™ -2



The case of complete sets

We fix some dy, and consider D := {1 < i< d, (p,i) =1}.
When p = 2, we have 6>(D) = 1n forany 2" — 1 < dp < 2™' — 3.

When p is odd, we have
® 3p(D) = ;1525 T when dy < p— 1

® 3p(D) = s Whenp” —1 < cp < p™' —p 1
© (D) = rrrop=n When p™*' —p—1 < dy < p"' -2
Remark

One can look for almost complete sets D, in order to increase the density; for
instance, forp = 2, dy = 2™ — 3, if we remove the integers 2" — 1 and
3.2"™' _1 from D, we get

2
2n—1

5 (D\{2”-1 3.2" ‘—1})




Back to the minimal weights; how far are we ?

In the case of complete sets of exponents, the linear bound is optimal

op,p(m) = [m(p —1)p,p(mM)] .



Back to the minimal weights; how far are we ?

In the case of complete sets of exponents, the linear bound is optimal

op,p(m) = [m(p —1)p,p(mM)] .

In general we can be as far from the linear bound as possible

Example

Let D= {1,2" + 3}, p =2 and assume n =2 mod 3; then we have
ép2 = 3, and
op2(2n+1)=n

We consider the difference

en,p(M) 1= ap,p(m) — m(p —1)dp,p



Bounding the difference

Let us give some (very) partial results

Proposition
There exists infinitely many m such that ep p(m) = 0.

Assume that D generates Z. There exists a constant C(D, p) such that for all
m>1
epp(m) < C(D, p)




Bounding the difference

Let us give some (very) partial results

Proposition
There exists infinitely many m such that ep p(m) = 0.

Assume that D generates Z. There exists a constant C(D, p) such that for all
m>1
epp(m) < C(D, p)

Under a stronger hypothesis, we can be more precise

Proposition

Assume moreover that all solutions of minimal density have the same length
L.
Then the function ep (M) is ¢-periodic for m large enough.




p=2 D=1{1,19}

oD,g(m)
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