Questions about the divisibility of exponential sums, Fourier coefficients and weight of codes

YACC 2014

Régis Blache

LAMIA, ÉSPÉ de Guadeloupe

10 juin 2014
rblache@iufm.univ-ag.fr

The problem

In the following, we fix

- a prime p;
- a finite subset $D \subset \mathbb{N}_{>0}$

For any $m \geq 1$, we consider the set $E_{D, p}(m) \subset\left\{0, \ldots, p^{m}-1\right\}^{|D|}$ consisting of the solutions of a modular equation

$$
U=\left(u_{d}\right)_{d \in D} s . t .\left\{\begin{aligned}
& \sum_{D} d u_{d} \equiv 0 \quad \bmod p^{m}-1 \\
& \sum_{D} d u_{d}>0 \\
& 0 \leq u_{d} \leq p^{m}-1
\end{aligned}\right.
$$

The problem

In the following, we fix

- a prime p;
- a finite subset $D \subset \mathbb{N}_{>0}$

For any $m \geq 1$, we consider the set $E_{D, p}(m) \subset\left\{0, \ldots, p^{m}-1\right\}^{|D|}$ consisting of the solutions of a modular equation

$$
U=\left(u_{d}\right)_{d \in D} \text { s.t. }\left\{\begin{array}{r}
\sum_{D} d u_{d} \equiv 0 \bmod p^{m}-1 \\
\sum_{D} d u_{d}>0 \\
0 \leq u_{d} \leq p^{m}-1
\end{array}\right.
$$

For any integer, we define its p-weight as the sum of its p-ary digits

$$
n=n_{0}+\cdots+p^{m-1} n_{m-1} \rightarrow s_{p}(n)=\sum n_{i}
$$

For $U \in E_{D, p}(m)$, let $s_{p}(U)=\sum_{D} s_{p}\left(u_{d}\right)$.

The problem

In the following, we fix

- a prime p;
- a finite subset $D \subset \mathbb{N}_{>0}$

For any $m \geq 1$, we consider the set $E_{D, p}(m) \subset\left\{0, \ldots, p^{m}-1\right\}^{|D|}$ consisting of the solutions of a modular equation

$$
U=\left(u_{d}\right)_{d \in D} \text { s.t. }\left\{\begin{array}{r}
\sum_{D} d u_{d} \equiv 0 \bmod p^{m}-1 \\
\sum_{D} d u_{d}>0 \\
0 \leq u_{d} \leq p^{m}-1
\end{array}\right.
$$

For any integer, we define its p-weight as the sum of its p-ary digits

$$
n=n_{0}+\cdots+p^{m-1} n_{m-1} \rightarrow s_{p}(n)=\sum n_{i}
$$

For $U \in E_{D, p}(m)$, let $s_{p}(U)=\sum_{D} s_{p}\left(u_{d}\right)$.
Problem
Find

$$
\sigma_{D, p}(m):=\min \left\{s_{p}(U), U \in E_{D, p}(m)\right\}
$$

Why?

We now give three results in order to motivate our problem; we denote by $\mathbb{F}_{p^{m}}$ the finite field with p^{m} elements.

The first one is about exponential sums; let $f(x)=\sum_{D} a_{d} x^{d} \in \mathbb{F}_{q}[x]_{D}$ denote a polynomial having its exponents in D; we define the exponential sum

$$
S_{m}(f):=\sum_{x \in \mathbb{F}_{q}} \psi(f(x)) .
$$

where ψ is a non trivial additive character of $\mathbb{F}_{p^{m}}$.

Why ?

We now give three results in order to motivate our problem; we denote by $\mathbb{F}_{p^{m}}$ the finite field with p^{m} elements.

The first one is about exponential sums; let $f(x)=\sum_{D} a_{d} x^{d} \in \mathbb{F}_{q}[x]_{D}$ denote a polynomial having its exponents in D; we define the exponential sum

$$
S_{m}(f):=\sum_{x \in \mathbb{F}_{q}} \psi(f(x)) .
$$

where ψ is a non trivial additive character of $\mathbb{F}_{p^{m}}$.
If we fix a root π of $X^{p-1}+p=0$, we have
Theorem (Moreno et al.)
Let $f(x) \in \mathbb{F}_{q}[x]_{D}$,

- the exponential sum $S_{m}(f)$ is divisible by $\pi^{\sigma_{D, p}(m)}$
- there exists $f \in \mathbb{F}_{q}[x]_{D}$ such that $S_{m}(f)$ is not divisible by $\pi^{\sigma_{D, p}(m)+1}$.

Codes, and boolean functions

We consider binary cyclic codes of length n. Such a code C can be seen as an ideal in the group algebra $\mathbb{F}_{2}[\mathbb{Z} / n \mathbb{Z}]$, defined by its zero set $Z(C)$, which is closed under multiplication by 2 in $\mathbb{Z} / n \mathbb{Z}$.
If we set $D=Z(C)$ here, McEliece theorem on the divisibility of cyclic codes can be written

Theorem

Let C be the code described above, with $n=2^{m}-1$. Then the Hamming weight of any codeword is divisible by $2^{\sigma_{D, 2}(m)-1}$, and there exists a word whose Hamming weight is not divisible by $2^{\sigma_{0,2}(m)}$.

Codes, and boolean functions

We consider binary cyclic codes of length n. Such a code C can be seen as an ideal in the group algebra $\mathbb{F}_{2}[\mathbb{Z} / n \mathbb{Z}]$, defined by its zero set $Z(C)$, which is closed under multiplication by 2 in $\mathbb{Z} / n \mathbb{Z}$.
If we set $D=Z(C)$ here, McEliece theorem on the divisibility of cyclic codes can be written

Theorem

Let C be the code described above, with $n=2^{m}-1$. Then the Hamming weight of any codeword is divisible by $2^{\sigma_{D, 2}(m)-1}$, and there exists a word whose Hamming weight is not divisible by $2^{\sigma_{D, 2}(m)}$.

Let $f: \mathbb{F}_{2^{m}} \rightarrow \mathbb{F}_{2}$ be a boolean function. Its Walsh transform $W_{f}: \mathbb{F}_{2^{m}} \rightarrow \mathbb{Z}$ is

$$
W_{f}(a):=S_{m}\left(f+\ell_{\mathrm{a}}\right)=\sum_{x \in \mathbb{F}_{q}} \psi(f(x)+a x) .
$$

Many properties of boolean functions depend on the divisibility of its Walsh spectrum. For instance, if $f(x)=x^{d}$ is a power function, the divisibility of its Walsh spectrum is exactly $\sigma_{D, 2}(m)$ for $D=\{1, d\}$.

Study of the minimal weight: let the length vary

A first bound: if $s_{p}(D)=\max \left\{s_{\rho}(D), d \in D\right\}$, we have

$$
\sigma_{D, p}(m) \geq \frac{m(p-1)}{s_{p}(D)}
$$

Study of the minimal weight: let the length vary

A first bound: if $s_{p}(D)=\max \left\{s_{p}(D), d \in D\right\}$, we have

$$
\sigma_{D, p}(m) \geq \frac{m(p-1)}{s_{p}(D)}
$$

Given a solution $U=\left(u_{d}\right)_{d \in D} \in E_{D, p}(m)$, we define

- its length as $\ell(U)=m$;
- its weight as $s_{p}(U)$;
- its absolute value by $\sum_{D} d u_{d}=\left(p^{m}-1\right)|U| \in\left\{1, \cdots, \sum_{D} d\right\}$.

Study of the minimal weight: let the length vary

A first bound: if $s_{p}(D)=\max \left\{s_{p}(D), d \in D\right\}$, we have

$$
\sigma_{D, p}(m) \geq \frac{m(p-1)}{s_{p}(D)}
$$

Given a solution $U=\left(u_{d}\right)_{d \in D} \in E_{D, p}(m)$, we define

- its length as $\ell(U)=m$;
- its weight as $s_{p}(U)$;
- its absolute value by $\sum_{D} d u_{d}=\left(p^{m}-1\right)|U| \in\left\{1, \cdots, \sum_{D} d\right\}$.

Remark

Let $U \in E_{D, p}(m), V \in E_{D, p}(n)$ be such that $|U|=|V|$. Then the $|D|-$ uple

$$
W=U \oplus V \text { defined by }\left(w_{d}=p^{n} u_{d}+V_{d}\right)_{d \in D}
$$

is an element in $E_{D, p}(m+n)$, satisfying

$$
\ell(W)=\ell(U)+\ell(V), s_{p}(W)=s_{p}(U)+s_{p}(V) \text { and }|W|=|U|=|V|
$$

Shifting the solutions

Denote by δ_{m} the map from $\left\{0, \ldots, p^{m}-1\right\}$ to itself that sends

- any $i<p^{m}-1$ to the remainder of $p i$ modulo $p^{m}-1$;
- $p^{m}-1$ to itself.

Shifting the solutions

Denote by δ_{m} the map from $\left\{0, \ldots, p^{m}-1\right\}$ to itself that sends

- any $i<p^{m}-1$ to the remainder of $p i$ modulo $p^{m}-1$;
- $p^{m}-1$ to itself.

Then δ_{m} shifts the base p digits. Actually we get

$$
\delta_{m}(i)=p i-\left(p^{m}-1\right) i_{m-1}
$$

where i_{m-1} is the $m-1$-th digit of i. In particular the map δ preserves the p-weight.

Shifting the solutions

Denote by δ_{m} the map from $\left\{0, \ldots, p^{m}-1\right\}$ to itself that sends

- any $i<p^{m}-1$ to the remainder of pi modulo $p^{m}-1$;
- $p^{m}-1$ to itself.

Then δ_{m} shifts the base p digits. Actually we get

$$
\delta_{m}(i)=p i-\left(p^{m}-1\right) i_{m-1}
$$

where i_{m-1} is the $m-1$-th digit of i.
In particular the map δ preserves the p-weight.
For $U=\left(u_{d}\right)_{d \in D} \in E_{D, p}(m)$, we define $\delta_{m} U:=\left(\delta_{m}\left(u_{d}\right)\right)_{d \in D}$.

Lemma

We have:

- $\delta_{m} U \in E_{D, p}(m)$
- $\delta_{m} U$ has the same weight than U

Moreover we get

$$
\left|\delta_{m} U\right|=p|U|-\sum_{D} d u_{d, m-1}
$$

Irreducible solutions

In the same way, we get

Lemma

Let $U \in E_{D, p}(m)$. Choose an integer $1 \leq t \leq m-1$, and for any $d \in D$ let $u_{d}=p^{t} w_{d}+v_{d}$ be the euclidean division of u_{d} by p^{t}.
We have the equalities :

$$
\sum_{d \in D} d v_{d}=p^{t}\left|\delta_{m}^{-t} U\right|-|U| ; \sum_{d \in D} d w_{d}=p^{m-t}|U|-\left|\delta_{m}^{-t} U\right|
$$

As a consequence, if $\left|\delta_{m}^{-t} U\right|=|U|$ for some $1 \leq t \leq m-1$, we get

$$
U=V \oplus W
$$

Thus we can construct all solutions from the ones such that $|U|, \ldots,\left|\delta_{m}^{m-1} U\right|$ are pairwise distinct (and then $m \leq \sum_{D} d$).

Irreducible solutions

In the same way, we get

Lemma

Let $U \in E_{D, p}(m)$. Choose an integer $1 \leq t \leq m-1$, and for any $d \in D$ let $u_{d}=p^{t} w_{d}+v_{d}$ be the euclidean division of u_{d} by p^{t}.
We have the equalities :

$$
\sum_{d \in D} d v_{d}=p^{t}\left|\delta_{m}^{-t} U\right|-|U| ; \sum_{d \in D} d w_{d}=p^{m-t}|U|-\left|\delta_{m}^{-t} U\right|
$$

As a consequence, if $\left|\delta_{m}^{-t} U\right|=|U|$ for some $1 \leq t \leq m-1$, we get

$$
U=V \oplus W
$$

Thus we can construct all solutions from the ones such that $|U|, \ldots,\left|\delta_{m}^{m-1} U\right|$ are pairwise distinct (and then $m \leq \sum_{D} d$).

Definition
We call such a solution an irreducible solution.

A linear lower bound for the minimal weights

Definition

We define the density of the set D with respect to p by

$$
\delta_{D, p}:=\min \left\{\frac{\sigma_{D, p}(m)}{m(p-1)}, 1 \leq m \leq \sum_{D} d\right\}
$$

A linear lower bound for the minimal weights
Definition
We define the density of the set D with respect to p by

$$
\delta_{D, p}:=\min \left\{\frac{\sigma_{D, p}(m)}{m(p-1)}, 1 \leq m \leq \sum_{D} d\right\}
$$

Then we have
Proposition
For any $m \geq 1$, we have $\sigma_{D, p}(m) \geq m(p-1) \delta_{D, p}$.

The case of complete sets

We fix some d_{0}, and consider $D:=\left\{1 \leq i \leq d_{0},(p, i)=1\right\}$.
When $p=2$, we have $\delta_{2}(D)=\frac{1}{n}$ for any $2^{n}-1 \leq d_{0} \leq 2^{n+1}-3$.

The case of complete sets

We fix some d_{0}, and consider $D:=\left\{1 \leq i \leq d_{0},(p, i)=1\right\}$.
When $p=2$, we have $\delta_{2}(D)=\frac{1}{n}$ for any $2^{n}-1 \leq d_{0} \leq 2^{n+1}-3$.
When p is odd, we have

- $\delta_{p}(D)=\frac{1}{p-1}\left\lceil\frac{p-1}{d}\right\rceil$ when $d_{0}<p-1$
- $\delta_{p}(D)=\frac{1}{n(p-1)}$ when $p^{n}-1 \leq d_{0} \leq p^{n+1}-p-1$
- $\delta_{p}(D)=\frac{2}{(2 n+1)(p-1)}$ when $p^{n+1}-p-1 \leq d_{0} \leq p^{n+1}-2$

The case of complete sets

We fix some d_{0}, and consider $D:=\left\{1 \leq i \leq d_{0},(p, i)=1\right\}$.
When $p=2$, we have $\delta_{2}(D)=\frac{1}{n}$ for any $2^{n}-1 \leq d_{0} \leq 2^{n+1}-3$.
When p is odd, we have

- $\delta_{p}(D)=\frac{1}{p-1}\left\lceil\frac{p-1}{d}\right\rceil$ when $d_{0}<p-1$
- $\delta_{p}(D)=\frac{1}{n(p-1)}$ when $p^{n}-1 \leq d_{0} \leq p^{n+1}-p-1$
- $\delta_{p}(D)=\frac{2}{(2 n+1)(p-1)}$ when $p^{n+1}-p-1 \leq d_{0} \leq p^{n+1}-2$

Remark

One can look for almost complete sets D, in order to increase the density; for instance, for $p=2, d_{0}=2^{n+1}-3$, if we remove the integers $2^{n}-1$ and $3 \cdot 2^{n-1}-1$ from D, we get

$$
\delta_{2}\left(D \backslash\left\{2^{n}-1,3 \cdot 2^{n-1}-1\right\}\right)=\frac{2}{2 n-1}
$$

Back to the minimal weights; how far are we ?

In the case of complete sets of exponents, the linear bound is optimal

$$
\sigma_{D, p}(m)=\left\lceil m(p-1) \delta_{D, p}(m)\right\rceil
$$

Back to the minimal weights; how far are we ?

In the case of complete sets of exponents, the linear bound is optimal

$$
\sigma_{D, p}(m)=\left\lceil m(p-1) \delta_{D, p}(m)\right\rceil
$$

In general we can be as far from the linear bound as possible

Example

Let $D=\left\{1,2^{n}+3\right\}, p=2$ and assume $n \equiv 2 \bmod 3$; then we have $\delta_{D, 2}=\frac{1}{3}$, and

$$
\sigma_{D, 2}(2 n+1)=n
$$

We consider the difference

$$
\epsilon_{D, p}(m):=\sigma_{D, p}(m)-m(p-1) \delta_{D, p}
$$

Bounding the difference

Let us give some (very) partial results

Proposition

There exists infinitely many m such that $\epsilon_{D, p}(m)=0$.
Assume that D generates \mathbb{Z}. There exists a constant $C(D, p)$ such that for all $m \geq 1$

$$
\epsilon_{D, p}(m) \leq C(D, p)
$$

Bounding the difference

Let us give some (very) partial results

Proposition

There exists infinitely many m such that $\epsilon_{D, p}(m)=0$.
Assume that D generates \mathbb{Z}. There exists a constant $C(D, p)$ such that for all $m \geq 1$

$$
\epsilon_{D, p}(m) \leq C(D, p)
$$

Under a stronger hypothesis, we can be more precise

Proposition

Assume moreover that all solutions of minimal density have the same length ℓ.
Then the function $\epsilon_{D, p}(m)$ is ℓ-periodic for m large enough.

$$
p=2, D=\{1,19\}
$$

$p=2, D=\{1,19\}$

