Questions about the divisibility of exponential sums, Fourier coefficients and weight of codes

YACC 2014

Régis Blache

LAMIA, ÉSPÉ de Guadeloupe

10 juin 2014

rblache@iufm.univ-ag.fr

The problem

In the following, we fix

- a prime *p*;
- a finite subset $D \subset \mathbb{N}_{>0}$

For any $m \ge 1$, we consider the set $E_{D,p}(m) \subset \{0, \dots, p^m - 1\}^{|D|}$ consisting of the solutions of a modular equation

$$U = (u_d)_{d \in D} s.t. \begin{cases} \sum_D du_d \equiv 0 \mod p^m - 1\\ \sum_D du_d > 0\\ 0 \le u_d \le p^m - 1 \end{cases}$$

The problem

In the following, we fix

- a prime *p*;
- a finite subset $D \subset \mathbb{N}_{>0}$

For any $m \ge 1$, we consider the set $E_{D,p}(m) \subset \{0, \dots, p^m - 1\}^{|D|}$ consisting of the solutions of a modular equation

$$U = (u_d)_{d \in D} s.t. \begin{cases} \sum_D du_d \equiv 0 \mod p^m - 1\\ \sum_D du_d > 0\\ 0 \le u_d \le p^m - 1 \end{cases}$$

For any integer, we define its *p*-weight as the sum of its *p*-ary digits

$$n = n_0 + \cdots + p^{m-1}n_{m-1} \rightarrow s_p(n) = \sum n_i$$

For $U \in E_{D,p}(m)$, let $s_p(U) = \sum_D s_p(u_d)$.

The problem

In the following, we fix

- a prime *p*;
- a finite subset $D \subset \mathbb{N}_{>0}$

For any $m \ge 1$, we consider the set $E_{D,p}(m) \subset \{0, \dots, p^m - 1\}^{|D|}$ consisting of the solutions of a modular equation

$$U = (u_d)_{d \in D} s.t. \begin{cases} \sum_D du_d \equiv 0 \mod p^m - 1\\ \sum_D du_d > 0\\ 0 \leq u_d \leq p^m - 1 \end{cases}$$

For any integer, we define its *p*-weight as the sum of its *p*-ary digits

$$n = n_0 + \cdots + p^{m-1}n_{m-1} \rightarrow s_p(n) = \sum n_i$$

For $U \in E_{D,p}(m)$, let $s_p(U) = \sum_D s_p(u_d)$.

Problem

Find

$$\sigma_{D,p}(m) := \min\{s_p(U), U \in E_{D,p}(m)\}$$

Why?

We now give three results in order to motivate our problem; we denote by \mathbb{F}_{p^m} the finite field with p^m elements.

The first one is about exponential sums; let $f(x) = \sum_{D} a_{d}x^{d} \in \mathbb{F}_{q}[x]_{D}$ denote a polynomial *having its exponents in D*; we define the exponential sum

$$S_m(f) := \sum_{x \in \mathbb{F}_q} \psi(f(x)).$$

where ψ is a non trivial additive character of \mathbb{F}_{p^m} .

Why?

We now give three results in order to motivate our problem; we denote by \mathbb{F}_{p^m} the finite field with p^m elements.

The first one is about exponential sums; let $f(x) = \sum_{D} a_{d}x^{d} \in \mathbb{F}_{q}[x]_{D}$ denote a polynomial *having its exponents in D*; we define the exponential sum

$$S_m(f) := \sum_{x \in \mathbb{F}_q} \psi(f(x)).$$

where ψ is a non trivial additive character of \mathbb{F}_{p^m} .

If we fix a root π of $X^{p-1} + p = 0$, we have

Theorem (Moreno et al.)

Let $f(x) \in \mathbb{F}_q[x]_D$,

- the exponential sum $S_m(f)$ is divisible by $\pi^{\sigma_{D,p}(m)}$
- there exists f ∈ 𝔽_q[x]_D such that S_m(f) is not divisible by π^{σ_{D,p}(m)+1}.

Codes, and boolean functions

We consider binary cyclic codes of length *n*. Such a code *C* can be seen as an ideal in the group algebra $\mathbb{F}_2[\mathbb{Z}/n\mathbb{Z}]$, defined by its zero set Z(C), which is closed under multiplication by 2 in $\mathbb{Z}/n\mathbb{Z}$.

If we set D = Z(C) here, McEliece theorem on the divisibility of cyclic codes can be written

Theorem

Let *C* be the code described above, with $n = 2^m - 1$. Then the Hamming weight of any codeword is divisible by $2^{\sigma_{D,2}(m)-1}$, and there exists a word whose Hamming weight is not divisible by $2^{\sigma_{D,2}(m)}$.

Codes, and boolean functions

We consider binary cyclic codes of length *n*. Such a code *C* can be seen as an ideal in the group algebra $\mathbb{F}_2[\mathbb{Z}/n\mathbb{Z}]$, defined by its zero set Z(C), which is closed under multiplication by 2 in $\mathbb{Z}/n\mathbb{Z}$.

If we set D = Z(C) here, McEliece theorem on the divisibility of cyclic codes can be written

Theorem

Let *C* be the code described above, with $n = 2^m - 1$. Then the Hamming weight of any codeword is divisible by $2^{\sigma_{D,2}(m)-1}$, and there exists a word whose Hamming weight is not divisible by $2^{\sigma_{D,2}(m)}$.

Let $f : \mathbb{F}_{2^m} \to \mathbb{F}_2$ be a boolean function. Its *Walsh transform* $W_f : \mathbb{F}_{2^m} \to \mathbb{Z}$ is

$$W_f(a) := S_m(f + \ell_a) = \sum_{x \in \mathbb{F}_q} \psi(f(x) + ax).$$

Many properties of boolean functions depend on the divisibility of its Walsh spectrum. For instance, if $f(x) = x^d$ is a power function, the divisibility of its Walsh spectrum is exactly $\sigma_{D,2}(m)$ for $D = \{1, d\}$.

Study of the minimal weight: let the length vary

A first bound: if $s_{\rho}(D) = \max\{s_{\rho}(D), d \in D\}$, we have

$$\sigma_{D,p}(m) \geq \frac{m(p-1)}{s_p(D)}$$

Study of the minimal weight: let the length vary

A first bound: if $s_p(D) = \max\{s_p(D), d \in D\}$, we have

$$\sigma_{D,p}(m) \geq \frac{m(p-1)}{s_p(D)}$$

Given a solution $U = (u_d)_{d \in D} \in E_{D,p}(m)$, we define

- its length as $\ell(U) = m$;
- its weight as $s_p(U)$;
- its absolute value by $\sum_{D} du_d = (p^m 1)|U| \in \{1, \cdots, \sum_{D} d\}.$

Study of the minimal weight: let the length vary

A first bound: if $s_p(D) = \max\{s_p(D), d \in D\}$, we have

$$\sigma_{D,p}(m) \geq \frac{m(p-1)}{s_p(D)}$$

Given a solution $U = (u_d)_{d \in D} \in E_{D,p}(m)$, we define

- its length as $\ell(U) = m$;
- its weight as $s_p(U)$;
- its absolute value by $\sum_{D} du_d = (p^m 1)|U| \in \{1, \cdots, \sum_{D} d\}.$

Remark

Let $U \in E_{D,p}(m)$, $V \in E_{D,p}(n)$ be such that |U| = |V|. Then the |D|-uple

$$W = U \oplus V$$
 defined by $(w_d = p^n u_d + v_d)_{d \in D}$

is an element in $E_{D,p}(m+n)$, satisfying

 $\ell(W) = \ell(U) + \ell(V), \ s_{\rho}(W) = s_{\rho}(U) + s_{\rho}(V) \ and \ |W| = |U| = |V|$

Shifting the solutions

Denote by δ_m the map from $\{0, \dots, p^m - 1\}$ to itself that sends

- any $i < p^m 1$ to the remainder of *pi* modulo $p^m 1$;
- $p^m 1$ to itself.

Shifting the solutions

Denote by δ_m the map from $\{0, \ldots, p^m - 1\}$ to itself that sends

- any $i < p^m 1$ to the remainder of *pi* modulo $p^m 1$;
- $p^m 1$ to itself.

Then δ_m shifts the base p digits. Actually we get

$$\delta_m(i) = pi - (p^m - 1)i_{m-1}$$

where i_{m-1} is the m-1-th digit of *i*.

In particular the map δ preserves the p-weight.

Shifting the solutions

Denote by δ_m the map from $\{0, \ldots, p^m - 1\}$ to itself that sends

- any $i < p^m 1$ to the remainder of pi modulo $p^m 1$;
- $p^m 1$ to itself.

Then δ_m shifts the base p digits. Actually we get

$$\delta_m(i) = pi - (p^m - 1)i_{m-1}$$

where i_{m-1} is the m-1-th digit of *i*.

In particular the map δ preserves the *p*-weight.

For $U = (u_d)_{d \in D} \in E_{D,p}(m)$, we define $\delta_m U := (\delta_m(u_d))_{d \in D}$.

Lemma

We have:

• $\delta_m U \in E_{D,p}(m)$

• $\delta_m U$ has the same weight than U

Moreover we get

$$|\delta_m U| = p|U| - \sum_D du_{d,m-1}$$

Irreducible solutions

In the same way, we get

Lemma

Let $U \in E_{D,p}(m)$. Choose an integer $1 \le t \le m - 1$, and for any $d \in D$ let $u_d = p^t w_d + v_d$ be the euclidean division of u_d by p^t . We have the equalities :

$$\sum_{d \in D} dv_d = p^t |\delta_m^{-t} U| - |U|; \sum_{d \in D} dw_d = p^{m-t} |U| - |\delta_m^{-t} U|.$$

As a consequence, if $|\delta_m^{-t} U| = |U|$ for some $1 \le t \le m - 1$, we get

$$U = V \oplus W$$

Thus we can construct all solutions from the ones such that $|U|, \ldots, |\delta_m^{m-1}U|$ are pairwise distinct (and then $m \leq \sum_D d$).

Irreducible solutions

In the same way, we get

Lemma

Let $U \in E_{D,p}(m)$. Choose an integer $1 \le t \le m - 1$, and for any $d \in D$ let $u_d = p^t w_d + v_d$ be the euclidean division of u_d by p^t . We have the equalities :

$$\sum_{d \in D} dv_d = p^t |\delta_m^{-t} U| - |U|; \sum_{d \in D} dw_d = p^{m-t} |U| - |\delta_m^{-t} U|.$$

As a consequence, if $|\delta_m^{-t} U| = |U|$ for some $1 \le t \le m - 1$, we get

$$U = V \oplus W$$

Thus we can construct all solutions from the ones such that $|U|, \ldots, |\delta_m^{m-1}U|$ are pairwise distinct (and then $m \leq \sum_D d$).

Definition

We call such a solution an irreducible solution.

A linear lower bound for the minimal weights

Definition

We define the density of the set D with respect to p by

$$\delta_{D,p} := \min\left\{\frac{\sigma_{D,p}(m)}{m(p-1)}, \ 1 \le m \le \sum_{D} d\right\}$$

A linear lower bound for the minimal weights

Definition

We define the density of the set D with respect to p by

$$\delta_{D,p} := \min\left\{\frac{\sigma_{D,p}(m)}{m(p-1)}, \ 1 \le m \le \sum_{D} d\right\}$$

Then we have

Proposition

For any $m \ge 1$, we have $\sigma_{D,p}(m) \ge m(p-1)\delta_{D,p}$.

The case of complete sets

We fix some d_0 , and consider $D := \{1 \le i \le d_0, (p, i) = 1\}$. When p = 2, we have $\delta_2(D) = \frac{1}{p}$ for any $2^n - 1 \le d_0 \le 2^{n+1} - 3$.

The case of complete sets

We fix some d_0 , and consider $D := \{1 \le i \le d_0, (p, i) = 1\}$. When p = 2, we have $\delta_2(D) = \frac{1}{n}$ for any $2^n - 1 \le d_0 \le 2^{n+1} - 3$.

When p is odd, we have

•
$$\delta_p(D) = \frac{1}{p-1} \lceil \frac{p-1}{d} \rceil$$
 when $d_0 < p-1$
• $\delta_p(D) = \frac{1}{n(p-1)}$ when $p^n - 1 \le d_0 \le p^{n+1} - p - 1$
• $\delta_p(D) = \frac{2}{(2n+1)(p-1)}$ when $p^{n+1} - p - 1 \le d_0 \le p^{n+1} - 2$

The case of complete sets

We fix some d_0 , and consider $D := \{1 \le i \le d_0, (p, i) = 1\}$. When p = 2, we have $\delta_2(D) = \frac{1}{p}$ for any $2^n - 1 \le d_0 \le 2^{n+1} - 3$.

When p is odd, we have

•
$$\delta_p(D) = \frac{1}{p-1} \lceil \frac{p-1}{d} \rceil$$
 when $d_0 < p-1$
• $\delta_p(D) = \frac{1}{n(p-1)}$ when $p^n - 1 \le d_0 \le p^{n+1} - p - 1$
• $\delta_p(D) = \frac{2}{(2n+1)(p-1)}$ when $p^{n+1} - p - 1 \le d_0 \le p^{n+1} - 2$

Remark

One can look for almost complete sets D, in order to increase the density; for instance, for p = 2, $d_0 = 2^{n+1} - 3$, if we remove the integers $2^n - 1$ and $3 \cdot 2^{n-1} - 1$ from D, we get

$$\delta_2\left(D\backslash\{2^n-1,3\cdot2^{n-1}-1\}\right)=\frac{2}{2n-1}$$

Back to the minimal weights; how far are we ?

In the case of complete sets of exponents, the linear bound is optimal

 $\sigma_{D,p}(m) = \lceil m(p-1)\delta_{D,p}(m) \rceil.$

Back to the minimal weights; how far are we ?

In the case of complete sets of exponents, the linear bound is optimal

$$\sigma_{D,p}(m) = \lceil m(p-1)\delta_{D,p}(m) \rceil.$$

In general we can be as far from the linear bound as possible

Example

Let $D = \{1, 2^n + 3\}$, p = 2 and assume $n \equiv 2 \mod 3$; then we have $\delta_{D,2} = \frac{1}{3}$, and $\sigma_{D,2}(2n+1) = n$

We consider the difference

$$\epsilon_{D,p}(m) := \sigma_{D,p}(m) - m(p-1)\delta_{D,p}$$

Bounding the difference

Let us give some (very) partial results

Proposition

There exists infinitely many *m* such that $\epsilon_{D,p}(m) = 0$.

Assume that D generates $\mathbb Z.$ There exists a constant C(D,p) such that for all $m\geq 1$

 $\epsilon_{D,p}(m) \leq C(D,p)$

Bounding the difference

Let us give some (very) partial results

Proposition

There exists infinitely many *m* such that $\epsilon_{D,p}(m) = 0$.

Assume that D generates \mathbb{Z} . There exists a constant C(D, p) such that for all $m \ge 1$

 $\epsilon_{D,p}(m) \leq C(D,p)$

Under a stronger hypothesis, we can be more precise

Proposition

Assume moreover that all solutions of minimal density have the same length ℓ .

Then the function $\epsilon_{D,p}(m)$ is ℓ -periodic for m large enough.

 $p = 2, D = \{1, 19\}$

m

 $p = 2, D = \{1, 19\}$

m