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The problem

In the following, we fix
a prime p;
a finite subset D ⊂ N>0

For any m ≥ 1, we consider the set ED,p(m) ⊂ {0, . . . , pm − 1}|D| consisting
of the solutions of a modular equation

U = (ud )d∈D s.t .


∑

D dud ≡ 0 mod pm − 1∑
D dud > 0

0 ≤ ud ≤ pm − 1

For any integer, we define its p-weight as the sum of its p-ary digits

n = n0 + · · ·+ pm−1nm−1 → sp(n) =
∑

ni

For U ∈ ED,p(m), let sp(U) =
∑

D sp(ud).

Problem

Find
σD,p(m) := min{sp(U), U ∈ ED,p(m)}
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Why ?

We now give three results in order to motivate our problem; we denote by Fpm

the finite field with pm elements.

The first one is about exponential sums; let f (x) =
∑

D ad xd ∈ Fq[x ]D denote
a polynomial having its exponents in D; we define the exponential sum

Sm(f ) :=
∑
x∈Fq

ψ(f (x)).

where ψ is a non trivial additive character of Fpm .

If we fix a root π of X p−1 + p = 0, we have

Theorem (Moreno et al.)

Let f (x) ∈ Fq[x ]D ,

the exponential sum Sm(f ) is divisible by πσD,p(m)

there exists f ∈ Fq[x ]D such that Sm(f ) is not divisible by πσD,p(m)+1.
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Codes, and boolean functions

We consider binary cyclic codes of length n. Such a code C can be seen as
an ideal in the group algebra F2[Z/nZ], defined by its zero set Z (C), which is
closed under multiplication by 2 in Z/nZ.
If we set D = Z (C) here, McEliece theorem on the divisibility of cyclic codes
can be written

Theorem

Let C be the code described above, with n = 2m − 1. Then the Hamming
weight of any codeword is divisible by 2σD,2(m)−1, and there exists a word
whose Hamming weight is not divisible by 2σD,2(m).

Let f : F2m → F2 be a boolean function. Its Walsh transform Wf : F2m → Z is

Wf (a) := Sm(f + `a) =
∑
x∈Fq

ψ(f (x) + ax).

Many properties of boolean functions depend on the divisibility of its Walsh
spectrum. For instance, if f (x) = xd is a power function, the divisibility of its
Walsh spectrum is exactly σD,2(m) for D = {1, d}.
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Study of the minimal weight: let the length vary

A first bound: if sp(D) = max{sp(D), d ∈ D}, we have

σD,p(m) ≥ m(p − 1)
sp(D)

Given a solution U = (ud )d∈D ∈ ED,p(m), we define

its length as `(U) = m;

its weight as sp(U);

its absolute value by
∑

D dud = (pm − 1)|U| ∈ {1, · · · ,
∑

D d}.

Remark

Let U ∈ ED,p(m), V ∈ ED,p(n) be such that |U| = |V |. Then the |D|-uple

W = U ⊕ V defined by
(
wd = pnud + vd

)
d∈D

is an element in ED,p(m + n), satisfying

`(W ) = `(U) + `(V ), sp(W ) = sp(U) + sp(V ) and |W | = |U| = |V |
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Shifting the solutions

Denote by δm the map from {0, . . . , pm − 1} to itself that sends
any i < pm − 1 to the remainder of pi modulo pm − 1;
pm − 1 to itself.

Then δm shifts the base p digits. Actually we get

δm(i) = pi − (pm − 1)im−1

where im−1 is the m − 1-th digit of i .
In particular the map δ preserves the p-weight.

For U = (ud)d∈D ∈ ED,p(m), we define δmU := (δm(ud))d∈D .

Lemma

We have:

δmU ∈ ED,p(m)

δmU has the same weight than U

Moreover we get
|δmU| = p|U| −

∑
D

dud,m−1
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Irreducible solutions

In the same way, we get

Lemma

Let U ∈ ED,p(m). Choose an integer 1 ≤ t ≤ m − 1, and for any d ∈ D let
ud = ptwd + vd be the euclidean division of ud by pt .
We have the equalities :∑

d∈D

dvd = pt |δ−t
m U| − |U| ;

∑
d∈D

dwd = pm−t |U| − |δ−t
m U|.

As a consequence, if |δ−t
m U| = |U| for some 1 ≤ t ≤ m − 1, we get

U = V ⊕W

Thus we can construct all solutions from the ones such that |U|, . . . , |δm−1
m U|

are pairwise distinct (and then m ≤
∑

D d).

Definition

We call such a solution an irreducible solution.
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A linear lower bound for the minimal weights

Definition

We define the density of the set D with respect to p by

δD,p := min

{
σD,p(m)

m(p − 1)
, 1 ≤ m ≤

∑
D

d

}

Then we have

Proposition

For any m ≥ 1, we have σD,p(m) ≥ m(p − 1)δD,p.

σD,2(m)

m

• •
• •

• • •
• •

• •
• • •

3

7

p = 2
D = {1, 9, 19}

δ = 3
7
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The case of complete sets

We fix some d0, and consider D := {1 ≤ i ≤ d0, (p, i) = 1}.

When p = 2, we have δ2(D) = 1
n for any 2n − 1 ≤ d0 ≤ 2n+1 − 3.

When p is odd, we have

δp(D) = 1
p−1d

p−1
d e when d0 < p − 1

δp(D) = 1
n(p−1) when pn − 1 ≤ d0 ≤ pn+1 − p − 1

δp(D) = 2
(2n+1)(p−1) when pn+1 − p − 1 ≤ d0 ≤ pn+1 − 2

Remark

One can look for almost complete sets D, in order to increase the density; for
instance, for p = 2, d0 = 2n+1 − 3, if we remove the integers 2n − 1 and
3 · 2n−1 − 1 from D, we get

δ2

(
D\{2n − 1, 3 · 2n−1 − 1}

)
=

2
2n − 1
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Back to the minimal weights; how far are we ?

In the case of complete sets of exponents, the linear bound is optimal

σD,p(m) = dm(p − 1)δD,p(m)e .

In general we can be as far from the linear bound as possible

Example

Let D = {1, 2n + 3}, p = 2 and assume n ≡ 2 mod 3; then we have
δD,2 = 1

3 , and
σD,2(2n + 1) = n

We consider the difference

εD,p(m) := σD,p(m)−m(p − 1)δD,p
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Bounding the difference

Let us give some (very) partial results

Proposition

There exists infinitely many m such that εD,p(m) = 0.

Assume that D generates Z. There exists a constant C(D, p) such that for all
m ≥ 1

εD,p(m) ≤ C(D, p)

Under a stronger hypothesis, we can be more precise

Proposition

Assume moreover that all solutions of minimal density have the same length
`.
Then the function εD,p(m) is `-periodic for m large enough.
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p = 2, D = {1,19}

σD,2(m)

m
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