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Hamming distance

Let F denote the binary field F2.
The set Fn is the set of all binary vectors of length n.

Definition

Let v ∈ Fn.
The Hamming weight w(v) of the vector v is the number of its
nonzero coordinates.
For any two vectors v1, v2 ∈ Fn, the Hamming distance between v1
and v2, denoted by d(v1, v2), is the number of coordinates in which
the two vectors differ.
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Boolean functions

Definition

A Boolean function (B.f. ) is any function f : Fn → F.
The set of all B.f. ’s from Fn to F will be denoted by Bn.

B.f. can be represented in a unique way in many different forms:

1 Algebraic normal form

2 Truth table (evaluation vector)

3 Numerical normal form

4 Walsh spectrum

5 ...
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Evaluation vector

We assume implicitly to have ordered Fn, so that

Fn = {p1, . . . , p2n} .

Definition

We consider the evaluation map from Bn to F2n , associating to
each B.f. f the vector f = (f (p1) . . . , f (p2n)), which is called the
evaluation vector of f .

The evaluation vector of f uniquely identifies f .
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Algebraic normal form

Proposition

A B.f. f ∈ Bn can be expressed in a unique way as a polynomial in
F[X ] = F[x1, . . . , xn], as

f =
∑

v∈Fn

bvX
v ,

where X v = xv11 · · · x
vn
n .

This representation is called the Algebraic Normal Form (ANF).
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Numerical normal form

In 1999, Carlet introduced a useful representation of B.f. ’s for
characterizing several cryptographic criteria.

B.f. ’s can be represented as elements of K[X ]/〈X 2 − X 〉, where
〈X 2 − X 〉 is the ideal generated by the polynomials
x21 − x1, . . . , x

2
n − xn, and K is Z, Q, R, or C.
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Numerical normal form

Definition

Let f be a function on Fn taking values in a field K.
We call the numerical normal form (NNF) of f the following
expression of f as a polynomial:

f (x1, . . . , xn) =
∑

u∈Fn

λuX
u ,

with λu ∈ K and u = (u1, . . . , un).

Once K is fixed, it can be proved that any B.f. f admits a unique
NNF.
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Nonlinearity of a Boolean function

Let f , g ∈ Bn. The distance d(f , g) between f and g is the
number of v ∈ Fn such that f (v) 6= g(v). It is obvious that
d(f , g) = d(f , g) = w(f + g) .

Definition

Let f ∈ Bn. The nonlinearity of f is the minimum of the distances
between f and any affine function, i.e. N(f ) = minα∈An d(f , α) .
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Nonlinearity of a Boolean function

Proposition

The maximum nonlinearity for a B.f. f is bounded by
max{N(f ) | f ∈ Bn} ≤ 2n−1 − 2

n
2
−1 .
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Walsh spectrum

Definition

The Walsh transform of a B.f. f ∈ Bn is a function F̂ : Fn → Z

such that
F̂ (x) =

∑

y∈Fn

(−1)x ·y+f (y) ,

where x · y is the scalar product of x and y .

The set of integers {F̂ (v) | v ∈ Fn} is called the Walsh spectrum
of the B.f. f . It holds that

N(f ) = min
v∈Fn
{2n−1 −

1

2
F̂ (v)} = 2n−1 −

1

2
max
v∈Fn
{F̂ (v)} .
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Cost of changing representation

ANF

NONLINEARITY

NNF

TT

WALSH SPECTRUM

max/min
O(2n)

BRUTE FORCE
O(22n)

mod 2

Poincaré formula

FMT N
O(n2n)

FMT F
O(n2n)

O(2n)

FWT
O(n2n)
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Cost of changing representation

ANF

NONLINEARITY

NNF

TT

WALSH SPECTRUM

max/min
O(2n)

BRUTE FORCE
O(22n)

Nonlinearity polynomial

Evaluation

FMT N

mod 2

Poincaré formula

O(n2n)

FMT N
O(n2n)

FMT F
O(n2n)

O(2n)

FWT
O(n2n)

min
O(2n)

O(n2n)
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Generic affine polynomial

Let A be the variable set A = {ai}0≤i≤n. We denote by
gn ∈ F[A,X ] the following polynomial:

gn = a0 +
n

∑

i=1

aixi .

Determining the nonlinearity of f ∈ Bn is the same as finding the
minimum weight of the vectors in the set {f + g | g ∈ An} ⊂ F2n .
We can consider the evaluation vector of the polynomial gn as
follows:

gn = (gn(A, p1), . . . , gn(A, p2n)) ∈ (F[A])2
n

.
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The nonlinearity polynomial

For each 0 ≤ i ≤ 2n, we define the following Boolean affine
polynomials:

f
(F)
i (A) = gn(A, pi ) + f (pi ) .

We also define
f
(Z)
i (A) = NNF(f

(F)
i (A)) .

Definition

We call nf (A) = f
(Z)
1 (A) + · · ·+ f

(Z)
n (A) ∈ Z[A] the nonlinearity

polynomial (NLP) of the B.f. f .

Notice that the integer evaluation vector nf represents all the
distances of f from all possible affine functions in n variables.

E. Bellini Computing the nonlinearity of a B.f.



Representations of Boolean functions
The nonlinearity polynomial

Computing the nonlinearity

Thus, to compute the nonlinearity of f we have to find the
minimum nonnegative integer t in the set of the evaluations of nf ,
that is, in {nf (ā) | ā ∈ {0, 1}

n+1 ⊂ Zn+1}.
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The nonlinearity ideal

Definition

For any t ∈ N we define the ideal N t
f ⊆ Q[A] as follows:

N t
f = 〈E [A]

⋃

{f
(Z)
1 + · · · + f

(Z)
2n − t}〉 = 〈E [A]

⋃

{nf − t}〉 (1)

Theorem

The variety of the ideal N t
f is non-empty if and only if the Boolean

function f has distance t from an affine function. In particular,
N(f ) = t, where t is the minimum positive integer such that
V(N t

f ) 6= ∅.
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A first algorithm using Gröbner basis

Input: f
Output: nonlinearity of f
1: Compute nf

2: j ← 1
3: while V(N j

f ) = ∅ do
4: j ← j + 1
5: end while

6: return j
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Example

Consider the case n = 2, f (x1, x2) = x1x2 + 1. We have that
f = (1, 1, 1, 0) and gn = (a0, a0 + a1, a0 + a2, a0 + a1 + a2).

Let us compute all f
(F)
i = (gn + f )i and f

(Z)
i ,for i = 1, . . . , 22:

f
(F)
1 = a0 + 1 → f

(Z)
1 = −a0 + 1

f
(F)
2 = a0 + a1 + 1 → f

(Z)
2 = 2a0a1 − a0 − a1 + 1

f
(F)
3 = a0 + a2 + 1 → f

(Z)
3 = 2a0a2 − a0 − a2 + 1

f
(F)
4 = a0 + a1 + a2 → f

(Z)
4 = 4a0a1a2 − 2a0a1 − 2a0a2 + a0

− 2a1a2 + a1 + a2
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Example

Then nf = f
(Z)
1 + f

(Z)
2 + f

(Z)
3 + f

(Z)
4 = 4a0a1a2 − 2a0 − 2a1a2 + 3

and since
nf = (3, 1, 3, 1, 3, 1, 1, 3)

then the nonlinearity of f is 1.
Notice that the vector nf represents all the distances of f from all
possible affine functions in 2 variables, that is, from
0, 1, x1, x1 + 1, x2, x2 + 1, x1 + x2, x1 + x2 + 1.
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Coefficients of the NLP

Theorem

Let v = (v0, v1, . . . , vn) ∈ Fn+1, ṽ = (v1, . . . , vn) ∈ Fn,
Av = av00 · · · a

vn
n ∈ F[A] and cv ∈ Z be such that

nf =
∑

v∈Fn+1 cvA
v . Then the coefficients of nf can be expressed

as:

cv =
∑

u∈Fn

f (u) = w(f ) if v = 0 (2)

cv = (−2)w(v)
∑

u∈Fn

ṽ�u

[

f (u)−
1

2

]

if v 6= 0 (3)
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Algorithm to compute the nonlinearity polynomial

Input: The evaluation vector f of a B.f. f (x1, . . . , xn)
Output: the vector c = (c1, . . . , c2n+1 ) of the coefficients of nf

Calculation of the coefficients of the monomials not containing a0

1: (c1, . . . , c2n ) = f

2: for i = 0, . . . , n − 1 do

3: b ← 0
4: repeat

5: for x = b, . . . , b + 2i − 1 do

6: cx+1 ← cx+1 + c
x+2i+1

7: if x = b then

8: c
x+2i+1

← 2i − 2c
x+2i+1

9: else

10: c
x+2i+1

← −2c
x+2i+1

11: end if

12: end for

13: b ← b + 2i+1

14: until b = 2n

15: end for

Calculation of the coefficients of the monomials containing a0

16: c1+2n ← 2n − 2c1

17: for i = 2, . . . , 2n do

18: ci+2n ← −2ci

19: end for

20: return c
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A butterfly scheme to compute the coefficients of the NLP

(x1, x2, x3) f (x1, x2, x3) Step 1 Step 2 Step 3

000 e1 // + e1 + e2 // + e1 + e2 + e3 + e4 // + e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8

001 e2

55kkkkkkkkkkk

1−2x
// 1− 2e2 // + 2− 2e2 − 2e4 // + 4− 2e2 − 2e4 − 2e6 − 2e8

010 e3 // + e3 + e4

CC
�

�
�

�
�

�
�

�
�

�

2−2x
// 2− 2e3 − 2e4 // + 4− 2e3 − 2e4 − 2e7 − 2e8

011 e4

55lllllllllll

1−2x
// 1− 2e4

CC
�

�
�

�
�

�
�

�
�

�

−2x
// −2 + 4e4 // + −4 + 4e4 − 4e8

100 e5 // + e5 + e6 // + e5 + e6 + e7 + e8

II

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

4−2x
// 4− 2e5 − 2e6 − 2e7 − 2e8

101 e6

55lllllllllll

1−2x
// 1− 2e6 // + 2− 2e6 − 2e8

II

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

−2x
// −4 + 4e6 − 4e8

110 e7 // + e7 + e8

CC
�

�
�

�
�

�
�

�
�

�

2−2x
// 2− 2e7 − 2e8

II

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

−2x
// −4 + 4e7 − 4e8

111 e8

55lllllllllll

1−2x
// 1− 2e8

CC
�

�
�

�
�

�
�

�
�

�

−2x
// −2 + 4e8

II

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

−2x
// 4− 8e8
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Complexity of computing the NLP coefficients

Theorem

Computing the coefficients of the nonlinearity polynomial requires
O(n2n) integer sums and doublings, in particular circa n2n−1

integer sums and circa n2n−1 integer doublings, and the storage of
O(2n) integers of size less than or equal to 2n.
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Complexity of computing the nonlinearity using the NLP

Theorem

Determining the coefficients of the polynomial nf from the truth
table of f and then finding N(f ) = min{nf (ā) | ā ∈ {0, 1}

n+1}
requires a total O(n2n) integer operations (sums and doublings).
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Some experimental comparison

n 4-5 5-6 6-7 7-8 8-9 9-10 10-11

log2
[ (n+1)2n+1

n2n

]

1.22 1.17 1.14 1.12 1.11 1.09 1.09
FWT 0.90 0.98 1.01 1.22 0.95 1.25 1.07

NLP+FPE 1.02 1.09 1.13 1.07 1.17 1.07 1.11
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Conclusion and future work

With a different approch we are able to compute the nonlinearity
of a B.f. with the same complexity as classical methods.

Is O(n2n) the complexity of the problem?

How to compute the ANF or the evaluation vector of a B.f.
from its nonlinearity polynomial?

Are there similar methods to compute other properties of a
B.f. (weight, resiliency, etc.)?

The method can be extended to compute the minimum
weight of any nonlinear binary code. Are there cases where
the method is faster than brute force or than
Brouwer-Zimmerman probabilistic algorithm for linear codes?
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Grazie per l’attenzione!
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