Yet another algorithm to compute the nonlinearity of a Boolean function

Dott. Emanuele Bellini

University of Trento, CryptoLab.
Telsy Elettronica S.p.A. (Turin)
YACC, June 2014

Index

(1) Representations of Boolean functions
(2) The nonlinearity polynomial
E. Bellini Computing the nonlinearity of a B.f.

Hamming distance

Let \mathbb{F} denote the binary field \mathbb{F}_{2}.
The set \mathbb{F}^{n} is the set of all binary vectors of length n.

Definition

Let $v \in \mathbb{F}^{n}$.
The Hamming weight $\mathrm{w}(v)$ of the vector v is the number of its nonzero coordinates.
For any two vectors $v_{1}, v_{2} \in \mathbb{F}^{n}$, the Hamming distance between v_{1} and v_{2}, denoted by $\mathrm{d}\left(v_{1}, v_{2}\right)$, is the number of coordinates in which the two vectors differ.

Boolean functions

Definition

A Boolean function (B.f.) is any function $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$. The set of all B.f. 's from \mathbb{F}^{n} to \mathbb{F} will be denoted by \mathcal{B}_{n}.
B.f. can be represented in a unique way in many different forms:
(1) Algebraic normal form
(2) Truth table (evaluation vector)
(3) Numerical normal form
(3) Walsh spectrum
(3) ...

Evaluation vector

We assume implicitly to have ordered \mathbb{F}^{n}, so that

$$
\mathbb{F}^{n}=\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{2^{n}}\right\}
$$

Definition

We consider the evaluation map from \mathcal{B}_{n} to $\mathbb{F}^{2^{n}}$, associating to each B.f. f the vector $\underline{f}=\left(f\left(p_{1}\right) \ldots, f\left(p_{2^{n}}\right)\right)$, which is called the evaluation vector of f.

The evaluation vector of f uniquely identifies f.

Algebraic normal form

Proposition

A B.f. $f \in \mathcal{B}_{n}$ can be expressed in a unique way as a polynomial in $\mathbb{F}[X]=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, as

$$
f=\sum_{v \in \mathbb{F}^{n}} b_{v} X^{v},
$$

where $X^{v}=x_{1}^{v_{1}} \cdots x_{n}^{v_{n}}$.
This representation is called the Algebraic Normal Form (ANF).

Numerical normal form

In 1999, Carlet introduced a useful representation of B.f. 's for characterizing several cryptographic criteria.
B.f. 's can be represented as elements of $\mathbb{K}[X] /\left\langle X^{2}-X\right\rangle$, where $\left\langle X^{2}-X\right\rangle$ is the ideal generated by the polynomials
$x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}$, and \mathbb{K} is $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, or \mathbb{C}.

Numerical normal form

Definition

Let f be a function on \mathbb{F}^{n} taking values in a field \mathbb{K}. We call the numerical normal form (NNF) of f the following expression of f as a polynomial:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{u \in \mathbb{F}^{n}} \lambda_{u} X^{u}
$$

with $\lambda_{u} \in \mathbb{K}$ and $u=\left(u_{1}, \ldots, u_{n}\right)$.
Once \mathbb{K} is fixed, it can be proved that any B.f. f admits a unique NNF.

Nonlinearity of a Boolean function

Let $f, g \in \mathcal{B}_{n}$. The distance $\mathrm{d}(f, g)$ between f and g is the number of $v \in \mathbb{F}^{n}$ such that $f(v) \neq g(v)$. It is obvious that $\mathrm{d}(f, g)=\mathrm{d}(\underline{f}, \underline{g})=\mathrm{w}(\underline{f}+\underline{g})$.

Definition

Let $f \in \mathcal{B}_{n}$. The nonlinearity of f is the minimum of the distances between f and any affine function, i.e. $\mathrm{N}(f)=\min _{\alpha \in \mathcal{A}_{n}} \mathrm{~d}(f, \alpha)$.

Nonlinearity of a Boolean function

Proposition

The maximum nonlinearity for a B.f. f is bounded by $\max \left\{\mathrm{N}(f) \mid f \in \mathcal{B}_{n}\right\} \leq 2^{n-1}-2^{\frac{n}{2}-1}$.

Walsh spectrum

Definition

The Walsh transform of a B.f. $f \in \mathcal{B}_{n}$ is a function $\hat{F}: \mathbb{F}^{n} \rightarrow \mathbb{Z}$ such that

$$
\hat{F}(x)=\sum_{y \in \mathbb{F}^{n}}(-1)^{x \cdot y+f(y)},
$$

where $x \cdot y$ is the scalar product of x and y.
The set of integers $\left\{\hat{F}(v) \mid v \in \mathbb{F}^{n}\right\}$ is called the Walsh spectrum of the B.f. f. It holds that

$$
\mathrm{N}(f)=\min _{v \in \mathbb{F}^{n}}\left\{2^{n-1}-\frac{1}{2} \hat{F}(v)\right\}=2^{n-1}-\frac{1}{2} \max _{v \in \mathbb{F}^{n}}\{\hat{F}(v)\}
$$

Cost of changing representation

Cost of changing representation

Generic affine polynomial

Let A be the variable set $A=\left\{a_{i}\right\}_{0 \leq i \leq n}$. We denote by $\mathfrak{g}_{n} \in \mathbb{F}[A, X]$ the following polynomial:

$$
\mathfrak{g}_{n}=a_{0}+\sum_{i=1}^{n} a_{i} x_{i}
$$

Determining the nonlinearity of $f \in \mathcal{B}_{n}$ is the same as finding the minimum weight of the vectors in the set $\left\{\underline{f}+\underline{g} \mid g \in \mathcal{A}_{n}\right\} \subset \mathbb{F}^{2^{n}}$. We can consider the evaluation vector of the polynomial \mathfrak{g}_{n} as follows:

$$
\underline{\mathfrak{g}_{\mathfrak{n}}}=\left(\mathfrak{g}_{n}\left(A, \mathrm{p}_{1}\right), \ldots, \mathfrak{g}_{n}\left(A, \mathrm{p}_{2^{n}}\right)\right) \in(\mathbb{F}[A])^{2^{n}}
$$

The nonlinearity polynomial

For each $0 \leq i \leq 2^{n}$, we define the following Boolean affine polynomials:

$$
f_{i}^{(\mathbb{F})}(A)=\mathfrak{g}_{n}\left(A, \mathrm{p}_{i}\right)+f\left(\mathrm{p}_{i}\right)
$$

We also define

$$
f_{i}^{(\mathbb{Z})}(A)=\operatorname{NNF}\left(f_{i}^{(\mathbb{F})}(A)\right) .
$$

Definition

We call $\mathfrak{n}_{f}(A)=f_{1}^{(\mathbb{Z})}(A)+\cdots+f_{n}^{(\mathbb{Z})}(A) \in \mathbb{Z}[A]$ the nonlinearity polynomial (NLP) of the B.f. f.

Notice that the integer evaluation vector \mathfrak{n}_{f} represents all the distances of f from all possible affine functions in n variables.

Computing the nonlinearity

Thus, to compute the nonlinearity of f we have to find the minimum nonnegative integer t in the set of the evaluations of \mathfrak{n}_{f}, that is, in $\left\{\mathfrak{n}_{f}(\bar{a}) \mid \bar{a} \in\{0,1\}^{n+1} \subset \mathbb{Z}^{n+1}\right\}$.

The nonlinearity ideal

Definition

For any $t \in \mathbb{N}$ we define the ideal $\mathcal{N}_{f}^{t} \subseteq \mathbb{Q}[A]$ as follows:

$$
\begin{equation*}
\mathcal{N}_{f}^{t}=\left\langle E[A] \bigcup\left\{f_{1}^{(\mathbb{Z})}+\cdots+f_{2^{n}}^{(\mathbb{Z})}-t\right\}\right\rangle=\left\langle E[A] \bigcup\left\{\mathfrak{n}_{f}-t\right\}\right\rangle \tag{1}
\end{equation*}
$$

Theorem

The variety of the ideal \mathcal{N}_{f}^{t} is non-empty if and only if the Boolean function f has distance t from an affine function. In particular, $\mathrm{N}(f)=t$, where t is the minimum positive integer such that $\mathcal{V}\left(\mathcal{N}_{f}^{t}\right) \neq \emptyset$.

A first algorithm using Gröbner basis

Input: f
Output: nonlinearity of f
1: Compute \mathfrak{n}_{f}
2: $j \leftarrow 1$
3: while $\mathcal{V}\left(\mathcal{N}_{f}^{j}\right)=\emptyset$ do
4: $\quad j \leftarrow j+1$
5: end while
6: return j

Example

Consider the case $n=2, f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+1$. We have that $\underline{f}=(1,1,1,0)$ and $\underline{\mathfrak{g}_{n}}=\left(a_{0}, a_{0}+a_{1}, a_{0}+a_{2}, a_{0}+a_{1}+a_{2}\right)$. Let us compute all $\overline{f_{i}^{(\mathbb{F})}}=\left(\underline{\mathfrak{g}_{n}}+\underline{f}\right)_{i}$ and $f_{i}^{(\mathbb{Z})}$,for $i=1, \ldots, 2^{2}$:

$$
\begin{array}{ll}
f_{1}^{(\mathbb{F})}=a_{0}+1 & \rightarrow f_{1}^{(\mathbb{Z})}=-a_{0}+1 \\
f_{2}^{(\mathbb{F})}=a_{0}+a_{1}+1 & \rightarrow f_{2}^{(\mathbb{Z})}=2 a_{0} a_{1}-a_{0}-a_{1}+1 \\
f_{3}^{(\mathbb{F})}=a_{0}+a_{2}+1 & \rightarrow f_{3}^{(\mathbb{Z})}=2 a_{0} a_{2}-a_{0}-a_{2}+1 \\
f_{4}^{(\mathbb{F})}=a_{0}+a_{1}+a_{2} & \rightarrow f_{4}^{(\mathbb{Z})}=4 a_{0} a_{1} a_{2}-2 a_{0} a_{1}-2 a_{0} a_{2}+a_{0} \\
& -2 a_{1} a_{2}+a_{1}+a_{2}
\end{array}
$$

Example

Then $\mathfrak{n}_{f}=f_{1}^{(\mathbb{Z})}+f_{2}^{(\mathbb{Z})}+f_{3}^{(\mathbb{Z})}+f_{4}^{(\mathbb{Z})}=4 a_{0} a_{1} a_{2}-2 a_{0}-2 a_{1} a_{2}+3$ and since

$$
\underline{\mathfrak{n}_{f}}=(3,1,3,1,3,1,1,3)
$$

then the nonlinearity of f is 1 .
Notice that the vector $\underline{\mathfrak{n}}_{f}$ represents all the distances of f from all possible affine functions in 2 variables, that is, from $0,1, x_{1}, x_{1}+1, x_{2}, x_{2}+1, x_{1}+x_{2}, x_{1}+x_{2}+1$.

Coefficients of the NLP

Theorem

Let $v=\left(v_{0}, v_{1}, \ldots, v_{n}\right) \in \mathbb{F}^{n+1}, \tilde{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}^{n}$, $A^{v}=a_{0}^{v_{0}} \cdots a_{n}^{v_{n}} \in \mathbb{F}[A]$ and $c_{v} \in \mathbb{Z}$ be such that $\mathfrak{n}_{f}=\sum_{v \in \mathbb{F}^{n+1}} c_{v} A^{v}$. Then the coefficients of \mathfrak{n}_{f} can be expressed as:

$$
\begin{array}{r}
c_{v}=\sum_{u \in \mathbb{F}^{n}} f(u)=\mathrm{w}(\underline{f}) \text { if } v=0 \\
c_{v}=(-2)^{\mathrm{w}(v)} \sum_{\substack{u \in \mathbb{F}^{n} \\
\tilde{v} \geq u}}\left[f(u)-\frac{1}{2}\right] \quad \text { if } v \neq 0 \tag{3}
\end{array}
$$

Algorithm to compute the nonlinearity polynomial

Input: The evaluation vector \underline{f} of a B.f. $f\left(x_{1}, \ldots, x_{n}\right)$
Output: the vector $c=\left(c_{1}, \ldots, c_{2 n+1}\right)$ of the coefficients of \mathfrak{n}_{f}
Calculation of the coefficients of the monomials not containing a_{0}
1: $\left(c_{1}, \ldots, c_{2} n\right)=\underline{f}$
2: for $i=0, \ldots, n-1$ do
3: $\quad b \leftarrow 0$
4: repeat
5: \quad for $x=b, \ldots, b+2^{i}-1$ do
6: $\quad c_{x+1} \leftarrow c_{x+1}+c_{x+2^{i}+1}$
7: if $x=b$ then
8: $\quad c_{x+2^{i}+1} \leftarrow 2^{i}-2 c_{x+2^{i}+1}$
9: else
10: $\quad c_{x+2^{i}+1} \leftarrow-2 c_{x+2^{i}+1}$
11: end if
12: end for
13: $\quad b \leftarrow b+2^{i+1}$
14: until $b=2^{n}$
15: end for
Calculation of the coefficients of the monomials containing a_{0}
16: $c_{1+2^{n}} \leftarrow 2^{n}-2 c_{1}$
17: for $i=2, \ldots, 2^{n}$ do
18:

$$
c_{i+2^{n}} \leftarrow-2 c_{i}
$$

19: end for
20: return c

A butterfly scheme to compute the coefficients of the NLP

Complexity of computing the NLP coefficients

Theorem

Computing the coefficients of the nonlinearity polynomial requires $O\left(n 2^{n}\right)$ integer sums and doublings, in particular circa $n 2^{n-1}$ integer sums and circa $n 2^{n-1}$ integer doublings, and the storage of $O\left(2^{n}\right)$ integers of size less than or equal to 2^{n}.

Complexity of computing the nonlinearity using the NLP

Theorem

Determining the coefficients of the polynomial \mathfrak{n}_{f} from the truth table of f and then finding $\mathrm{N}(f)=\min \left\{\mathfrak{n}_{f}(\bar{a}) \mid \bar{a} \in\{0,1\}^{n+1}\right\}$ requires a total $O\left(n 2^{n}\right)$ integer operations (sums and doublings).

Some experimental comparison

n	$4-5$	$5-6$	$6-7$	$7-8$	$8-9$	$9-10$	$10-11$
$\log _{2}\left[\frac{(n+1) 2^{n+1}}{n 2^{n}}\right]$	1.22	1.17	1.14	1.12	1.11	1.09	1.09
FWT	0.90	0.98	1.01	1.22	0.95	1.25	1.07
NLP+FPE	1.02	1.09	1.13	1.07	1.17	1.07	1.11

E. Bellini Computing the nonlinearity of a B.f.

Conclusion and future work

With a different approch we are able to compute the nonlinearity of a B.f. with the same complexity as classical methods.

- Is $O\left(n 2^{n}\right)$ the complexity of the problem?
- How to compute the ANF or the evaluation vector of a B.f. from its nonlinearity polynomial?
- Are there similar methods to compute other properties of a B.f. (weight, resiliency, etc.)?
- The method can be extended to compute the minimum weight of any nonlinear binary code. Are there cases where the method is faster than brute force or than Brouwer-Zimmerman probabilistic algorithm for linear codes?

Grazie per l'attenzione!

E. Bellini Computing the nonlinearity of a B.f.

