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Residue Number System
Svoboda-Valach’57, Garner’59, Szabo-Tanaka’67, (CRT) Ch’in Chiu-Shao 1247

RNS Base

I A set of coprime numbers (m1, ...,mk), with M =
k∏

i=1

mi

Representation in RNS

I A represented by its residues (a1, ..., ak) with ai = |A|mi

Operations

I Full parallel operations (mod M) with M =
k∏

i=1

mi

(|a1 ◦ b1|m1
, . . . , |an ◦ bn|mn

)→ A ◦ B (mod M)
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Residue Number System: example

RNS Base:
B = (3, 7, 13, 19) M = 5187

Representations:
X = 147 Y = 31 Z = 124
XRNS = (0, 0, 4, 14) YRNS = (1, 3, 5, 12) ZRNS = (1, 5, 7, 10)

Operations:
XRNS +

RNS
YRNS = (|0 + 1|3, |0 + 3|7, |4 + 5|13, |14 + 12|19)

= (1, 3, 9, 7)
= 178

XRNS ×RNS
YRNS = (|0× 1|3, |0× 3|7, |4× 5|13, |14× 12|19)

= (0, 0, 7, 16)
= 4557
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Lagrange representations in GF (pk) with k ≤ p
B .-Imbert-Negre 2006ieeeTC

Extension of a finite field
Elements of GF (pk): GF (p) polynomials of degree lower than k.

Lagrange representation
I is defined by k different points e1, ...ek in GF (p). (k ≤ p.)

I A polynomial A(X ) = α0 + α1X + ...+ αk−1X
k−1 over

GF (p) is given in Lagrange representation by:

(a1 = A(e1), ..., ak = A(ek)).

I Remark: ai = A(ei ) = A(X ) mod (X − ei ).

Operations

are made independently on each A(ei ) modulo mi (X )
mi (X ) = (X − ei )(as for FFT or Tom-Cook or Karatsuba).
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Example

Finite Field

I GF (235) defined by an irreducible polynomial I := x5 + 2 x + 1

I Let A and B be two elements of GF (235) in polynomial
forms: A := 2 x4 + x + 3 and B := x2 + 5 x + 4

Lagrange representation

I We consider GF (235) and the two sets of points:
e = (2, 4, 6, 8, 10) and e’ = (3, 5, 7, 9, 11).

I Then, elements are defined by:
Ae = (14, 13, 2, 15, 3) or Ae′ = (7, 16, 5, 1, 17)
Be = (18, 17, 1, 16, 16) or Be′ = (5, 8, 19, 15, 19)
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Trinomial residues in GF (2n)
B.-Imbert-Jullien 2005ARITH17

Finite Field
Elements of GF (2n) are considered as GF (2) polynomials of degree
lower than n.

Trinomial representation

I is defined by a set of k coprime trinomials
mi (X ) = X d + X ti + 1, with k × d ≥ n,

I an element A(X ) is represented by (a1(X ), ...ak(X )) with
ai (X ) = A(X ) mod mi (X ).

I This representation is equivalent to RNS.

Operations

are made independently on each ai (X ) modulo mi (X )
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Trinomial residues
Example in GF (2n)

We consider d = 16 and k = 3, thus n ≤ 48:

I base1 = (x16 + 1, x16 + x + 1, x16 + x2 + 1)

I A := x18 + 1 B := x23 + 1

I Abase1 := (x2 + 1, x3 + x2 + 1, x4 + x2 + 1)

Bbase1 := (x7 + 1, x8 + x7 + 1, x9 + x7 + 1)

ABbase1 := (x9 +x2 +x7 +1, x11 +x3 +x9 +x2 +x8 +x7 +1, x13 +x4 +x2 +x7 +1)

A× B := x41 + x23 + x18 + 1
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Residue Systems

Advantages

I Efficient Addition and Multiplication.

I Parallelization (GPU, multicore, . . . ).

I Small moduli.

I Side-Channel: Error Correction, Randomisation.

Drawbacks

I M smooth, not useful for Cryptography.

I Problems: modular reduction, euclidean division, comparison.

I Tool: Base conversion.
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Residue version of Montgomery Reduction
Montgomery 1985, Posh and Posh 1995, B.-Didier-Kornerup 1997

Residue Montgomery algorithm

1. Q = −(Ap−1) mod M (calculus in base M)

2. Extension of the representation of Q to the base M ′

3. R = (A + Qp)×M−1 (calculus in base M ′)

4. Extension of the representation of R to the base M

Remarks
R ≡ A×M−1 mod p with R > 2p
Auxiliary bases M ′, M ′ and M coprime (exact product, and
existence of M−1), p < M,M ′ (or deg I (X ) ≤ degM(X ), degM ′(X ))

Montgomery notation

A′ = A×M mod p and Montg(A′ × B ′,M,M ′, p) ≡ (A× B)×M (mod p)
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Extension of Residue System Bases

I The extensions are similar to the polynomial interpolations.

I We consider (a1, ..., ak) the residue representation of A in
base M.

I The Lagrange interpolation gives

k∑
i=1

∣∣∣∣∣ai ×
[
M

mi

]−1

mi

∣∣∣∣∣
mi

× M

mi
= A +αM

One has α = 0 for polynomials. For integers α can be,
according to the cases, neglected or computed.
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Extension in RNS Montgomery
B. - Didier - Kornerup 2001, Shenoy - Kumaresan 1989, Posh - Posh 1995, Kawamura -
Koike - Sano - Shimbo 2000

I The extension of Q from M to M ′ does not need to be exact,
Q is multiplied by p

I The second extension of R from M ′ to M must be exact.
Hence α must be determined

I an extra modulo can be used

α =

∣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
i=1

∣∣∣∣∣ai ×
[
M

mi

]−1

mi

∣∣∣∣∣
mi

× M

mi

∣∣∣∣∣∣
mextra

− aextra

∣∣∣∣∣∣
mextra

×M−1

∣∣∣∣∣∣∣
mextra

I or we use the integer part of
k∑

i=1

∣∣∣∣∣ai ×
[
M

mi

]−1

mi

∣∣∣∣∣
mi

× 1

mi
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Exact Extension of Residue System Bases
Newton interpolation, H.L. Garner 1958, B. - Kaihara - Plantard 2009

We first translate in an intermediate representation Mixed Radix
Systems (MRS):

ζ1 = a1

ζ2 = (a2 − ζ1) m−1
1 mod m2

ζ3 =
(

(a3 − ζ1) m−1
1 − ζ2

)
m−1

2 mod m3

...

ζn =
(
. . .
(

(an − ζ1) m−1
1 − ζ2

)
m−1

2 − · · · − ζn−1

)
m−1

n−1 mod mn.

We evaluate A, with Horner’s rule, as

A = (. . . ((ζn mn−1 + ζn−1) mn−2 + · · ·+ ζ3) m2 + ζ2) m1 + ζ1.
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Some conclusions about RNS
B. - Duquesne - Ercegovac - Meloni 2006, Szerwinski - Güneysu 2008, Guillermin 2010,
Antão - B. - Sousa 2010

I RNS is well adapted to parallel architectures (GPU,
Multicore,...).

I Modular reductions stay costly.

I For ECC or Pairing it is possible to reduce the number of
modular reductions since A× B + C × D needs only one
reduction.

I As for the interpolation, the choice of the bases is important.
Does there exist an FFT like approach for RNS?
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Positional Number Systems and Modular Operations

I Number system: radix β and a set of digits {0, ..., β − 1}.
I We denote by p the modulo, with p < βn

βn ≡ ε (mod p), with ε =
n−1∑
i=0

εiβ
i , εi ∈ {0, ..., β − 1}

I A modular operation (ex.: modular multiplication)

1. Polynomial operation: W (X ) = A(X )× B(X )
2. Polynomial reduction: V (X ) = W (X ) mod (X n − ε(X ))

I Pseudo-Mersenne properties for the reduction.
I The coefficients of V (X ) can be larger than β − 1 the

maximal digit.

3. Coefficient reduction: M(X ) = Reductcoeff(V (X ))
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Modular Reduction with pseudo-Mersenne numbers
p = βn − ε avec 0 ≤ ε < βn/2

I In this kind of reduction we have two products by ε
I ε very small, for example ε < β, for having a product by a digit
I ε very sparse (most of the digits are equal to zero) then the

product is replaced by some shift-and-adds.

I There are only very few such Pseudo-Mersenne numbers.

I The question is: Is it possible to have a number system where
p is a Pseudo-Mersenne number?
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Modular Arithmetic Adapted Bases
Th. Plantard PhD 2005

The main idea

I Representation of A:

A =
n−1∑
i=0

aiγ
i mod p, with ai ∈ {0, ..., ρ− 1} and p < ρn.

I γ can be huge, but ρ is small (redundancy).

I (p, n, γ, ρ) defines the MAAB system.

Modular reduction

I For the polynomial reduction: γn ≡ ε (mod p) with ε small.

I For the coefficient reduction different approaches.
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Modular Arithmetic Adapted Bases
B. - Imbert - Plantard 2004SAC

First approach (find P and γ)

I The construction of the system giving some features: n = 8,
and ρ = 232 with p < ρ8 determine the size of the problem.

I The property γ8 ≡ 2 (mod p) for the polynomial reduction.

I The coefficient reduction is given by 232 ≡ γ5 + 1 (mod p)

Thus V = 232V1 + V0 = 232Id .V1 + V0 ≡ M.V1 + V0 (mod p) with

M =



1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
2 0 0 1 0 0 0 0
0 2 0 0 1 0 0 0
0 0 2 0 0 1 0 0
0 0 0 2 0 0 1 0
0 0 0 0 2 0 0 1


≡



232 0 0 0 0 0 0 0

0 232 0 0 0 0 0 0

0 0 232 0 0 0 0 0

0 0 0 232 0 0 0 0

0 0 0 0 232 0 0 0

0 0 0 0 0 232 0 0

0 0 0 0 0 0 232 0

0 0 0 0 0 0 0 232


(mod p)
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Modular Arithmetic Adapted Bases
B. - Imbert - Plantard 2004SAC

Remarks and construction

I 232Id −M = 0 mod p defines a lattice.

I p divides det (232Id −M), a factorization gives:
p = 115792089021636622262124715160334756877804245386980633020041035952359812890593

which corresponds to the expected size.

I The value of γ is deduced as a solution of
gcd(X 8 − 2, 232 − X 5 − 1) modulo p:
γ = 14474011127704577782765589395224532314179217058921488395049827733759590399996

I Generally, M is found with coefficients lower than 2k/2, which
means that three rounds are sufficient.
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Modular Arithmetic Adapted Bases
B. - Imbert - Plantard 2005ARITH

Second approach (find ρ and γ)

Consider the modulo p = 53, and n = 7 for the digit size, p < ρ7,
and we expect a small value for ρ like ρ = 2.
We look for a radix with Pseudo-Mersenne property, we find
γ = 14, such that γ7 ≡ 2 (mod p).
We consider the carry propagation lattice modulo p

L =


V1
V2
V3
V4
V5
V6
V7

 =


−14 1 0 0 0 0 0

0 −14 1 0 0 0 0
0 0 −14 1 0 0 0
0 0 0 −14 1 0 0
0 0 0 0 −14 1 0
0 0 0 0 0 −14 1

53 0 0 0 0 0 0


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Modular Arithmetic Adapted Bases
B. - Imbert - Plantard 2005ARITH

Remarks and construction

I This lattice L admits as short vector
(1, 1, 0, 0, 0, 0, 1) = V6 + 14 ∗ V5 + 142 ∗ V4 + 143 ∗ V3 + 144 ∗ V2 + (145 + 1) ∗ V1 + V7.

I With γ7 ≡ 2 (mod p), we construct a sublattice L′.

⇒ L′ =


1 1 0 0 0 0 1
2 1 1 0 0 0 0
0 2 1 1 0 0 0
0 0 2 1 1 0 0
0 0 0 2 1 1 0
0 0 0 0 2 1 1
2 0 0 0 0 2 1


I Hence, ρ can be chosen equal to 2.

I Coefficient reduction becomes a closest vector problem.
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Modular Arithmetic Adapted Bases

Conclusions

I First approach: efficient coefficient reduction but reduced
choice of moduli.

I Second approach: we can choose the moduli but complexity
of the coefficient reduction.
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Ostrowski Bases

Continued Fraction Expansion of a
m

I a
m = k0 + 1

k1+ 1

k2+ 1
k3+...

et pi
qi

= k0 + 1
k1+ 1

k2+... 1
ki

I θi = aqi −mpi
I Recursive computation

qi+2 = ki+2qi+1 + qi q0 = 1 q−1 = 0
θi+2 = ki+2θi+1 + θi θ0 = a−mk0 θ−1 = −m

Ostrowski representations base (qi) and base (θi)

b =
n−1∑
i=0

biqi , with b0 < k1, 0 ≤ bi ≤ ki+1, bi = 0 if bi+1 = ki+2

x =
n−1∑
i=0

xiθi , with x0 < k1, 0 ≤ xi ≤ ki+1, xi = 0 if xi+1 = ki+2
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Ostrowski Bases
Example

Continued Fraction Expansion of 3238
7741

I 3238
7741 = [0; 2, 2, 1, 1, 3, 1, 2, 4, 1, 2, 3]

I Ostrowski base (q)

Bq := [1, 2, 5, 7, 12, 43, 55, 153, 667, 820, 2307]

I Consider b = 6000 in Ostrowski representation

bBq := [0, 1, 0, 1, 0, 1, 1, 3, 0, 1, 2]

I x := [1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 3] represents 7740 the largest
value
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Ostrowski Bases
Example

Continued Fraction Expansion of 3238
7741

I θ base

Bθ := [3238,−1265, 708,−557, 151,−104, 47,−10, 7,−3, 1]

I Decreases and Alternates

I x := [1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 3] represents 4503 the largest
value

I y := [0, 2, 0, 1, 0, 1, 0, 4, 0, 2, 0] represents −3237 the smallest
value

I Remark: x − y = 7740
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Ostrowski Bases and Multiplication
M. Gouicem PhD 2013

Computation of a × b mod m

1. Evaluation of qi and θi from a
m .

2. Representation of b in the Ostrowski base (qi ).

b =
n−1∑
i=0

biqi , with b0 < k1, 0 ≤ bi ≤ ki+1, bi = 0 if bi+1 = ki+2

3. Return R =
n−1∑
i=0

biθi = a · b mod m, with (−m < R < m)

Proof:

n−1∑
i=0

biθi =

n−1∑
i=0

bi (aqi −mpi ) = a

n−1∑
i=0

biqi + αm
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Ostrowski Bases
Example

Multiplication of 3238× 6000 (mod 7737)

I 3238
7741 = (0, 2, 2, 1, 1, 3, 1, 2, 4, 1, 2, 3)
Bq := [1, 2, 5, 7, 12, 43, 55, 153, 667, 820, 2307]

Bθ := [3238,−1265, 708,−557, 151,−104, 47,−10, 7,−3, 1]

I Consider b = 6000 in Ostrowski representation
bBq := [0, 1, 0, 1, 0, 1, 1, 3, 0, 1, 2]

I We obtain in θ base
(1∗(−1265)+1∗(−557)+1∗(−104)+1∗47+3∗(−10)+1∗(−3)+2∗1)

= (−1910) ≡ 5831 ≡ 3238× 6000 mod 7741
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Ostrowski Bases
M. Gouicem PhD 2013

Conclusions

I Quadratic complexity in the size of the modulo.

I Division: the θ representation provides the division in
Ostrowski representation.

I Allow to perform inversion, multiplication and division with
the same circuit.

I Multiplications and/or divisions by the same number a
becomes efficient
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Addition Chains: Fibonacci - Zeckendorf

Representation of Zeckendorf - 1972 (1939)

I Fibonacci Series: Fn+2 = Fn+1 + Fn, with F0 = 0 and F1 = 1
1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

I Representation with qi = Fi+2

b =
n−1∑
i=1

biqi , with bi ∈ {0, 1}, bi = 0 if bi+1 = 1

Remarks

I It is the Ostrowski representation using the continued fraction
expansion of the golden ratio.

I Example: k := 1117 = [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1]Z =
F3 + F5 + F9 + F11 + F16 = 2 + 5 + 34 + 89 + 987
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Addition Chains: Fibonacci - Zeckendorf

kP with an efficient P + Q.

I Algorithm:

1. Decomposition in the Fibonacci representation
2. Recursive computing with respect to the decomposition

I Example: Evaluation right to left of 1117.P using
[0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1]Z with 18 Additions

1 0 0 0 0 1 0 1 0 0 0 1 0 1 0
1 1 2 3 5 8

9 14 23
24 38 62 100 162

163 263 426
427 690 1117
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Addition Chains: Fibonacci - Zeckendorf
E. B. Burger et al. 2012ActaAr.

Properties

I Length: k such that Fk ≤ n < Fk+1

I Ratio of ones: φ(k)
k → 5−

√
5

10 = 0.2763

Pros and cons

I Advantage: only additions

I Drawback: more digits than in binary: ratio = ln 2
lnϕ ∼ 1.44 with

ϕ =
1+
√

(5)

2

I Tool: Greedy Algorithm
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Euclidean Addition Chains
N. Meloni PhD 2007, Herbaut-Liardet-Meloni-Teglia-Veron 2010INDOCRYPT

Definition
A Euclidean addition chain (EAC) of length s for an integer k is a
sequence (ci )i=1...s with ci ∈ {0, 1}.
The computation of k is obtained from the sequence (vi , ui )i=0..s

v0 = 1, u0 = 2
(ui , vi ) = (vi−1 + ui−1, vi−1) if ci = 1 (small step),
(ui , vi ) = (vi−1 + ui−1, ui−1) if ci = 0 (big step).
Then we denote χ(c) = vs + us = k .

Properties

I Euclidean algorithm scheme

I χ(0n) = Fn+4, χ(1n) = n + 3
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Euclidean Addition Chains
N. Meloni PhD 2007, Herbaut-Liardet-Meloni-Teglia-Veron 2010INDOCRYPT

Example

We can find shortest chains for 1117 with 15 additions:
[1117, 648], [648, 469], [469, 179],

[290, 179], [179, 111], [111, 68], [68, 43], [43, 25], [25, 18], [18, 7],
[11, 7], [7, 4], [4, 3], [3, 1],

[2, 1], [1, 1]
χ(01000100000010) = 1117

Construction of keys

How to construct a set of keys with efficient EAC representations?
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Double base
Dimitrov-Jullien-Miller 1999ieeeTC , Dimitrov-Imbert-Mishra 2005ASIACRYPT

Double Base

I Representation: X =
∑

xi ,j2
i3j , xi ,j ∈ {0, 1}

I Example: 127 = 1111111b = 2332 + 2133 + 2030 = 72 + 54 + 1

kP with 2P and 3P

1. Decomposition in double base, find a path.

2. Return 2i03j0P + 2i13j1P + 2i23j2P + . . .

Advantages and Drawbacks

I Sparse representation

I Redundancy and optimal representation
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Double base
Berthé - Imbert 2009DMTCS , Tijdeman 1974CompMath

Construction

I How to find the nearest 2a3b to a given number N?

I Then a greedy algorithm can be used.

I Number of non-zero digits is in O(logN/ log logN)

Method

I We minimize: a ∗ ln 2 + b ∗ ln 3− lnN or a log3 2 + b − log3 N

I Considering the fractional part we have
(a log3 2− log3 N) mod 1
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Double base
Berthé - Imbert 2009DMTCS

Method using Ostrowski

I We consider the continued fraction expansion of log3 2
[0; 1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, ...]

I The Ostrowski bases are constructed
I θi = qi ∗ log3 2− pi
I Recursive computation

qi+2 = ki+2qi+1 + qi q0 = 1 q−1 = 0
θi+2 = ki+2θi+1 + θi θ0 = log3 2− k0 θ−1 = −1

I a is found in two steps
I Representation of log3 N mod 1 in θ base:

(log3 N) mod 1 =
n−1∑
i=0

niθi

I We have a =
n−1∑
i=0

niqi
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Double base
Berthé - Imbert 2009DMTCS

Example for N = 2000

I We consider the continued fraction expansion of log3 2:
[0; 1, 1, 1, 2, 2]
and the bases: Bq = [1, 1, 2, 3, 8, 19]
Bθ = [0.63,−0.369, 0.26,−.1, 0.047,−0.012]

I we consider T = (log3 N − blog3 Nc) = 0.918639575
I Tθ = [1, 0, 1, 0, 0, 0] = 0.8927892604
I In the base Bq: [0, 0, 1, 0, 0, 0] = 3 = a
I Then blog3(N/23)c = 5 = b

I We verify that:
2136 2335 2434 2633 2732 2931 21030

1458 1944 1296 1728 1152 1536 1024
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Tools and open problems

Residue Systems

I Chinese Remainder Theorem, Polynomial interpolations

I Find good bases (base extension)

Modular Positional representations

I Lattice reduction, Shortest vector, Closest vector

I Continued Fraction Expansion, Ostrowski representation

Exponent representation

I Fibonacci series, Zeckendorf, Euclid algorithm

I Shortest addition chains, Ostrowski approximation


	Residue Sytems 
	Residue Number System
	Polynomial Residue Representations
	Modular Reduction 

	Modular Positional Arithmetics
	Modular Arithmetic Adapted Bases
	Ostrowski Bases

	Exponent representations (ECC kP)
	Addition Chains
	Double base

	Conclusions

