
Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Behavior-driven Authenticated Data Structure

Kevin Atighehchi, Alexis Bonnecaze, Traian Muntean

I2M CNRS UMR 7373, ERISCS
YACC 2014, Porquerolles

June 12, 2014



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

1 Introduction

2 Background

3 Authenticated dictionary based on frequency

4 Complexity analysis

5 Authentication of HTTP responses

6 Conclusion



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Introduction

The term “authenticated dictionary“:
Dictionary: organizes, manages a collection of data, and
answers to queries on data.
Authenticated: answers to queries are certified.

Many applications:
Certificate revocation in public key infrastructures,
Geographic information system querying,
Third party data publication and validation on Internet.

This last application is of great interest for the Internet users
(e.g. Content Distribution Networks (CDN) and authenticated
Web site data).



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Three-party authentication model

Generally, three actors are involved:
A trusted source,
A (potentially) untrusted provider,
A set of users.

authentication
information

update

updates
Source Directory Client

information

answer

authentication

query

answer

Figure: The three-party authentication model



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Distribution of data and authenticated dictionaries

Most of authenticated dictionaries use Merkle trees, red-black
trees or skip-lists as data structures.

Well adapted as long as no distinction is made between
data.
Most Web traffic follows Zipf’s law except for the traffic
residue.

Useit.com traffic during a eight-week period (log-log scale):



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Background

Authenticated dictionaries:
A set S of pair elements of the form (Identifier, Content).
Request of an element or membership query from the user.
Cryptographic proof of membership/non-membership,
content authenticity.
Non-repudiation.

Data structures:
Static.
Dynamic: 2-3 Trees, B-Trees or red-black trees,
non-deterministic skip-lists.
Append/disjoin-only: variant of a Merkle tree with
non-power of two leaves.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Authenticated dictionary based on frequency

On the Internet, some Web pages are consulted more
frequently than others. In our scheme the size of authentication
proof is smaller when the frequency of the query is higher.

Benefits:
For the directory, reduction of the LAN/WAN interface
bandwidth usage.
The directory can cache proofs frequently queried for
better usage of memory.
For a given user, reduction of both the LAN/WAN
interface bandwidth and the number of calculations to
verify a proof.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Authenticated data structure construction

Our scheme relies on the following data structures.
Two dynamic binary trees A1 and A2:

A1: ranks the hashed identifiers (ui)i=1...n in ascending
order and allows us to search a given ui and to retrieve its
corresponding content, or frequency.
A2: arrange frequencies (fi)i=1...n in decreasing order and
allows the rank of a given frequency to be retrieved.

Authentication proofs are constructed using the third data
structure, denoted T .



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Authenticated data structure construction (Ctd)

T is formed of the
following two subtrees:

T1: the left child, is a
height-balanced tree
with internal leaves,
used for the most
frequent data.
T2: right child of T ,
is a Merkle-like tree,
used for very low
frequent data.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Authenticated data structure construction (Ctd)

The source and the directory construct the following ordered
sets:

Lu ranks elements by ascending order of hashed identifier

Lu = {(u1, fΠ(1)), . . . , (un, fΠ(n)), (+∞, 0)}.

Lf ranks elements by descending order of frequency

Lf = {(uΠ−1(1), f1), . . . , (uΠ−1(n), fn), (uΠ−1(n), fn), (+∞, 0)}.

From these lists, the source calculates the tree T . Calculation
of a leaf hi is done using a pair-wise chaining, as follows:

hΠ(1) = H(−∞, u1, c1),
hΠ(i) = H(ui−1, ui , ci) where i ∈ [2, . . . , n],
hΠ(+∞) = H(un,+∞, 0).



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Authenticated data structure construction (Ctd)

The tree T1 is constructed using the most frequent data (until
the median frequency).

h2 h3N3

N1

h6h5h4

N2

h1level 1

level 2

level 3

The remaining data serve to construct a Merkle-like tree,
denoted T2.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Algorithms

To manage the dictionary and communicate with a client, the
following algorithms are employed:

Proof of existence.
Proof of non-existence.
Verification.
Updating:

Insertion.
Modification.
Reordering and deletion.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Proof construction and verification algorithms

Proof of existence of ui : Insert in a list ui−1 and the
sibling nodes (or sibling leaves) of its parent (or ancestor)
nodes from the base level to the root node.
Proof of non-existence of u: Search the lowest j such that
uj > u > uj−1 and construct the proof of existence of uj .
The verification consists to:

Recursively hash these listed values.
Check the consistency of the computed root node with the
signed one.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Updating algorithms
Insertion of a new pair and modification of a content

Insertion of a new pair element (Id , c) where
H(Id) 6∈ (ui)i=1...n:

Two new leaves are computed:
One leaf is inserted in T2.
An existing leaf is updated to restore the pair-wise
chaining.

Internal nodes corresponding to paths from each of these
two leaves to the root node of T are recomputed.

The content of an existing element (Id , c) is changed to c ′:
One leaf is updated.
The nodes of the path from the updated leaf up to the
root node of T are recomputed.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Updating algorithms
Reordering of elements and deletion

Reordering elements in T . Example: The leaf belongs to T1
and will stay in T1

A simple solution is to move the corresponding leave at
the correct position and shift a consequent part of leaves.

Example: Move the leaf of the element of frequency fm
(m > i) such that fi < f ′

m < fi+1. .
Cost in O

(
n log n

)
.

A better solution is to break the order of elements in T1
and to satisfy the following relaxed order property:

∀ i = 1 . . . h − 1, ∀ Idx ∈ Si , Idy ∈ Si+1 f (Idx ) ≥ f (Idy ).



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Updating algorithms
Reordering of elements and deletion

Example (“min-max” choice criteria):
A leaf authenticating an element e = (Id ,C(Id)) belonging to
level i must move up to level j (i > j).

1 This leaf is inserted at level j at the position of the leaf
having the lowest frequency in this level.

2 This last element is moved down to level j + 1 at the
position of the leaf having the lowest frequency, and so on.

3 The leaf having the lowest frequency at level i − 1 is
moved up to the former position of e at level i .

4 Finally, nodes which are on the path of the leaves that
have been moved are recomputed back up the root of the
tree.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Complexity analysis
Authentication proof size and verification run time

The operation costs are expressed in terms of number of hash
operations.

Theorem (Worst case proof size)
Considering a number of elements n ≥ 1, the authentication
proof is of length 3 in the best case, and of length in O

(
log n

)
in the worst case.

Numerical results:
Dictionary

size
Merkle-like
structure

Our
system

Improvement

103 9.97 8.05 19.5%
5 · 104 15.61 12.25 22.5%
5 · 105 18.93 14.73 22.5%
106 19.93 15.46 22.5%

Table: Average proof size and verification cost results



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Complexity analysis (Ctd)
Modification, insertion, frequency changes and deletion

Theorem (Modification of a content or insertion of a new
element of frequency f = 0)
The number of hash evaluations to update T is in O

(
log n

)
where n is the overall number of elements in the dictionary.

Theorem (A single frequency change or a deletion an element)
By using the “min-max“ choice criteria, the number of hash
computations to update T is in O

(
log2 n

)
.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

A solution to authenticate HTTP responses

The server returns either the requested page together with a
200 success response or a 404 error message and a proof of
authenticity of the content of that page (or possibly a proof of
non existence):

ui= digest of a url (Uniform Resource Locator),
ci= content digest of the corresponding page.

For a dynamic site, some works have to be done to allow the
use of our dictionary:

Individual authentication for each static object of the page
(multiple proofs=consequent overhead).
A hash scheme to generate the same hash value for the set
of static fields of interest in the considered page.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Conclusion

Our proposition is an authenticated dictionary with the
following features:

A data structure with two components, each of which
being nearly optimal for a portion of the distribution.
Compared to the use of a Merkle tree, smaller proof sizes
(average gain of more than 20%) when the requests
distribution follows Zipf law.
Comparable proof sizes otherwise.

Improvements ? Length-limited Huffman trees or variants of
dynamic Huffman trees. An average gain of 30% for the proof
size is expected.

Future work: a complete scheme to authenticate http
responses.



Behavior-
driven

Authenticated
Data

Structure

Kevin
Atighehchi

Sommaire

Introduction

Background

Authenticated
dictionary
based on
frequency

Complexity
analysis

Authentication
of HTTP
responses

Conclusion

Thanks for your attention!


	Introduction
	Background
	Authenticated dictionary based on frequency
	Complexity analysis
	Authentication of HTTP responses
	Conclusion

