A Privacy-preserving Biometric Authentication Protocol Revisited

Aysajan Abidin and Katerina Mitrokotsa

Department of Computer Science & Engineering Chalmers University of Technology

YACC 2014, Porquerolles, France, 9-13 June 2014

- Biometric authentication ⇒ **Privacy issues**
- Bringer et al.* privacy-preserving biometric authentication protocol
- Secure & privacy-preserving in the *honest-but-curious* (or passive) attack model
- Algorithm: to mount a number of attacks on the protocol
- Propose improved version that is secure in the malicious (insider) but non-colluding insiders

* Bringer et al. "An application of the Goldwasser-Micali cryptosystem to biometric authentication", ACISP 2007.

- Natural variability ⇒ Biometric feature is rarely the same twice
- Traditional cryptographic handling (e.g. hash) not suitable
- Authentication: comparison of two vectors (binary for iris biometrics)
- Distributed architecture: lower the *level of trust* on the involved parties
- Example: relationship between a biometric feature & relevant identities
- Privacy issues ⇒ Use secure multi-party computation

A distributed biometric authentication protocol

Schematic description of a distributed biometric authentication system

- **Biometric reference privacy:** A tries to recover the reference biometric template b_i .
- Biometric sample privacy: A tries to recover the fresh biometric template b'_i .
- *Identity privacy:* A tries to link a biometric template b_i to the user identity ID_i .
- User indistinguishability: A should not be able to distinguish if two authentication attempts are from the same user.

Definition (Privacy-preserving biometric authentication protocol)

A biometric authentication protocol is said to be **privacy-preserving** if no probabilistic polynomial-time (PPT) adversary can recover any of the following information, if they are not already known: a fresh biometric trait b'_i , a stored biometric template b_i and/or the correspondence between the identity ID_i and the stored template b_i .

GM Cryprosystem (KeyGen, Enc, Dec)

- KeyGen(1^ℓ): Upon an input 1^ℓ, where ℓ is the security parameter, outputs two distinct large prime numbers p and q, n = pq and a non-residue x for which the Jacobi symbol is 1. The public key pk is (x, n), and the secret key sk is (p, q).
- **Enc** (m, \mathbf{pk}) : Takes a message $m \in \{0, 1\}$ and the public key $\mathbf{pk} = (x, n)$ as input, and outputs the ciphertext $c = y^2 x^m \mod n$, where y is randomly chosen from Z_n^* .
- Dec(c, sk): Takes a ciphertext c and the private key sk = (p, q) as input, and outputs the message m, which is 0 if c is a quadratic residue, 1 otherwise.

It holds that:

- $\operatorname{Enc}(m) \times \operatorname{Enc}(m') = \operatorname{Enc}(m \oplus m')$ and,
- $\operatorname{Enc}(m)^y = \operatorname{Enc}(ym)$

Bringer et al. privacy-preserving biometric authentication protocol					
Sensor \mathcal{S}	Phase 1	Authentication			
public key K_p get b_i' from \mathcal{U}_i –	$Enc(b'_i), ID_i \longrightarrow$	public key K_p			
Authentication	Phase 2	Database \mathcal{DB}			
server AS public key K_p retrieves <i>i</i> from ID _{<i>i</i>} $\begin{pmatrix} 1 & if \ i = i \end{pmatrix}$		public key K _p			
$t_j := \begin{cases} 1, & \text{if } j = i \\ 0, & \text{if } j \neq i \end{cases}$	for $j = 1$ to N				
-	for $k = 1$ to M	for $k = 1$ to M $\prod_{j=1}^{N} \operatorname{Enc}(t_j)^{b_{j,k}} = \operatorname{Enc}(b_{i,k})$			
	$Enc(b_{i,k})$				

Bringer et al. biometric authentication protocol

		Phase 3	
	Authentication Server \mathcal{AS}		Matcher \mathcal{M}
	public key K_p		public key K_p
	$Compute \\ Enc(b'_{i,k})Enc(b_{i,k}) \\ = Enc(b'_{i,k} \oplus b_{i,k}) = v_k$		
	Take a permutation σ		
	$\lambda_k = \textit{v}_{\sigma(k)}$	$\xrightarrow{\lambda_1,,\lambda_M} \rightarrow$	$(Dec(\lambda_1), \dots, Dec(\lambda_M))$ for $k = 1$ to M Check if
		$\underbrace{\operatorname{HW}\!\left(\operatorname{Dec}(\lambda_k)\right)\!\!\leqslant\!\!\tau}$	$HW\big(Dec(\lambda_k)\big) \leqslant \tau$
-		Phase 4	
	User \mathcal{U}_i		Authentication Server \mathcal{AS}
		$\leftarrow Out_{AS}$	

- $\blacksquare \mathcal{AS} \text{ sets } \lambda := \mathsf{Enc}(b_i) = (\mathsf{Enc}(b_{i1}), \mathsf{Enc}(b_{i2}), \cdots, \mathsf{Enc}(b_{iM})) = c_1, c_2, \dots, c_M$
- and b= $\underbrace{(Enc(0), \cdots, Enc(0))}_{M \ bits}$
- **Replaces** components of *b* with components of λ
- Sends **repeatedly** b to the \mathcal{M} (check if it is accepted or rejected)
- Finds a bit-string whose Hamming weight is equal to the threshold au+1

The matcher \mathcal{M} is checking if $HW(b_i \oplus b'_i) \leqslant \tau$

Step 2: c_1 , Enc(0), Enc(0), Enc(0), \cdots , Enc(0) \downarrow Accepted

Step 3: $c_1, c_2, Enc(0), Enc(0), \cdots, Enc(0)$ \downarrow Accepted

Step 4:
$$c_1, c_2, c_3, \dots, c_k, \operatorname{Enc}(0) \cdots, \operatorname{Enc}(0)$$

 \downarrow
Rejected? then $b_k = 1$

Step 5: $c_1, c_2, c_3, \ldots, c_{k-1}, Enc(1), Enc(0), \cdots, Enc(0)$ \downarrow k-th bit revealed!

Step 6: $Enc(0), c_2, c_3, \dots, c_{k-1}, Enc(1), \dots, Enc(0)$ \downarrow Accepted? then $b_1 = 1$

Step 7: $Enc(1), c_2, c_3, \ldots, c_{k-1}, Enc(1), \cdots, Enc(0),$ $\downarrow \downarrow$ start recovering bits 1 to k-1

Algorithm 1

```
Input: Enc(b_i) = c_1, \cdots, c_M
Output: b_i
Initialise: b_i = 00 \cdots 0
For k = 1 to M.
     Set \lambda = c_1, \ldots, c_k, \mathsf{Enc}(0), \ldots, \mathsf{Enc}(0)
     Send \lambda to the matcher \mathcal{M}
     If \lambda is rejected Then
          break
     EndIf
     If k == M Then
          Return centerSearch(b_i)
     EndIf
EndFor
Set k^* = k
Set b_{i,k^*} = 1
If k^* \ge 2 Then
    For k = 1 to k^* - 1.
          Set \lambda = c_1, \ldots, c_{k-1}, \mathsf{Enc}(0), c_{k+1}, \ldots, c_{k^*}, \mathsf{Enc}(0), \ldots, \mathsf{Enc}(0)
               Send \lambda to the matcher \mathcal{M}
               If \lambda is accepted Then
                    b_{i,k} = 1
               EndIf
    EndFor
EndIf
For k = k^* + 1 to M:
     Set \lambda = c_1, \dots, c_{k^*-1}, Enc(0), \dots, Enc(0), c_k, Enc(0), \dots, Enc(0)
     Send \lambda to the matcher \mathcal{M}
     If \lambda is rejected Then
          b_{i,k} = 1
     EndIf
EndFor
Return b_i
```

Algorithm 1

```
Input: Enc(b_i) = c_1, \cdots, c_M
Output: b_i
Initialise: b_i = 00 \cdots 0
For k = 1 to M:
        Set \lambda = c_1, \ldots, c_k, \operatorname{Enc}(0), \ldots, \operatorname{Enc}(0)
        Send \lambda to the matcher \mathcal{M}
        If \lambda is rejected Then
               break
        EndIf
             Send \lambda to the matcher \mathcal{M}
            If \lambda is accepted Then
                b_{i} = 1
             EndIf
    EndFor
EndIf
For k = k^* + 1 to M:
     Set \lambda = c_1, \ldots, c_{k^*-1}, Enc(0), \ldots, Enc(0), c_k, Enc(0), \ldots, Enc(0)
     Send \lambda to the matcher \mathcal{M}
     If \lambda is rejected Then
        b_{ik} = 1
     EndIf
EndFor
Return b<sub>i</sub>
```

Attack 1 - \mathcal{AS} Compromised

- Use Algorithm 1 and input $Enc(b_i) = c_1, \ldots, c_M$
- Deduce all bits of b_i , $O(\max(2(\tau + M), 4\tau + M))$

Attack 2 - AS Compromised

- \mathcal{AS} has access to $Enc(b_i)$ and $Enc(b_i \oplus b'_i)$ thus deduce $Enc(b'_i)$
- Use $Enc(b'_i)$ as input to Algorithm 1, deduce b'_i

Attack 3 - Compromised \mathcal{DB}

- $\blacksquare \mathcal{DB} \text{ simulates } \mathcal{AS} \text{ queries } \mathcal{M}$
- Uses Algorithm 1 with input $Enc(t_j)$

Phase 1

$\textbf{Sensor} \ \mathcal{S}$

Authentication Server \mathcal{AS}

Get \mathcal{M} 's public key: pk Secret key: \mathcal{K} Shared keys: $\mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_{S \leftrightarrow \mathcal{DB}}$ Derive from $\mathcal{K}_{S \leftrightarrow \mathcal{DB}}$: π Generate: S $\omega = \text{Enc}_{\mathcal{K}_1}(S)$ $\sigma = h_{\mathcal{K}_1}(\omega)$ Get b'_i and ID_i from \mathcal{U}_i $\text{id}_i = \text{Enc}_{\mathcal{K}}(\text{ID}_i)$ Compute, for $k = 1, \dots, M$: $a_k = \text{Enc}((b'_{i,k})_\pi \oplus S_k)) \xrightarrow{a, \text{id}_{i,i}(\omega, \sigma)}$ Phase 2

d ____

Authentication Server \mathcal{AS}

Get \mathcal{M} 's public key: pk Shared key: K_3 Retrieve *i* from id_i $t_j := \begin{cases} 1, & \text{if } j = i \\ 0, & \text{if } j \neq i \end{cases}$ Compute, for $j = 1, \dots, N$: $d_j = \text{Enc}(t_j)$

Database \mathcal{DB}

Get \mathcal{M} 's public key: pk Shared keys: K_4 , K_5 , $K_{S\leftrightarrow \mathcal{DB}}$

Derive from $K_{\mathcal{S}\leftrightarrow \mathcal{DB}}$: π

Generate:
$$S', K'_4$$

Compute, for $k = 1, \cdots, M$:
 $\left(\prod_{j=1}^N d_j^{(b_{j,k})\pi \oplus S'_k}\right)$
 $= \operatorname{Enc}\left((b_{i,k})\pi \oplus S'_k\right) = c_k$
 $\omega' = \operatorname{Enc}_{K_4}(S')$
 $\sigma' = h_{K_5}(\omega')$

_c, (u

Authentication Server \mathcal{AS}

Porquerolles, France June 2014

17 / 22

For
$$k = 1, \dots, M$$
:
 $a_k c_k = \operatorname{Enc}\left(\left(b'_{i,k} \oplus b_{i,k}\right)_{\pi} \oplus S_k \oplus S'_k\right) = \lambda_k$ sk
 $\sigma'' = h_{K_3}(\lambda)$

$$\xrightarrow{(\omega,\sigma), (\omega',\sigma'), (\lambda,\sigma'')} \operatorname{Check:}$$
 $h_{K_2}(\omega) \stackrel{?}{=} \sigma, h_{K_5}(\omega') \stackrel{?}{=} \sigma'$
 $h_{K_3}(\lambda) \stackrel{?}{=} \sigma''$
 $S \leftarrow \operatorname{Dec}_{K_1}(\omega)$
 $S' \leftarrow \operatorname{Dec}_{K_4}(\omega')$
 $(b_i \oplus b'_i)_{\pi} \leftarrow \operatorname{Dec}(\lambda) \oplus S \oplus S'$
 $\operatorname{Check:}$
 $\operatorname{HW}((b_i \oplus b'_i)_{\pi}) \leq \tau$
User \mathcal{U}_i
 $\operatorname{PHASE} 4$
Authentic. Server \mathcal{AS}

Phase 3

No link between the user's identity and hir/her biometrics.

Theorem

For any ID_{i_0} and two biometric templates b'_{i_0} , b'_{i_1} , where i_0 , $i_1 \ge 1$ and b'_{i_0} is the biometric template related to ID_{i_0} , any of the malicious, but not colluding AS, DB, and M can only **distinguish** between (ID_{i_0}, b'_{i_0}) and (ID_{i_0}, b'_{i_1}) with a **negligible advantage**.

The \mathcal{DB} may not distinguish the authentication attempts of two users.

Theorem

For any two users \mathcal{U}_{i_0} and \mathcal{U}_{i_1} , where $i_0, i_1 \ge 1$, if \mathcal{U}_{i_β} where $\beta \in \{0, 1\}$ makes an authentication attempt, then the malicious database \mathcal{DB} can only guess β with a negligible advantage. The adversary's advantage is defined as $|\Pr\{\beta = \beta'\} - 1/2|$, where β' is \mathcal{DB} 's guess.

Assumptions

- The sensor S is *honest*, has not been compromised and captures the biometric template b_i from an alive human user.
- The entities *AS*, *DB*, *M* may *not collude* with each other.

Assumptions

- The sensor S is *honest*, has not been compromised and captures the biometric template b_i from an alive human user.
- The entities \mathcal{AS} , \mathcal{DB} , \mathcal{M} may not collude with each other.

Theorem

If the Assumptions hold and if:

(a) S and S' are generated using ϵ -secure PNGs,

(b) the symmetric encryption schemes SKE used between the sensor S and the matcher

 $\mathcal M,$ and between the database $\mathcal D\mathcal B$ and the matcher $\mathcal M,$ is IND-COA-secure, and

(c) the GM scheme is IND-CPA-secure.

Then, our modified protocol is secure any against malicious authentication server \mathcal{AS} .

- Enabler of the attack: Bit-by-bit encryption using GM encryption scheme.
- Question: How to avoid the attack when multiple entities are colluding?
- Use another way to compare fresh and stored biometric instead of HW?

Thank you for your attention!